We propose a flexible and scalable approximate Bayesian inference methodology for the Cox Proportional Hazards model with partial likelihood. The model we consider includes nonlinear covariate effects and correlated survival times. The proposed method is based on nested approximations and adaptive quadrature, and the computational burden of working with the log-partial likelihood is mitigated through automatic differentiation and Laplace approximation. We provide two simulation studies to show the accuracy of the proposed approach, compared with the existing methods. We demonstrate the practical utility of our method and its computational advantages over Markov Chain Monte Carlo methods through the analysis of Kidney infection times, which are paired, and the analysis of Leukemia survival times with a semi-parametric covariate effect and spatial variation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09622802221134172 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9814026 | PMC |
J Appl Stat
May 2024
Department of Mathematics, Brunel University London, Uxbridge, UK.
Although the fractional polynomials (FPs) can act as a concise and accurate formula for examining smooth relationships between response and predictors, modelling conditional mean functions observes the partial view of a distribution of response variable, as distributions of many response variables such as blood pressure (BP) measures are typically skew. Conditional quantile functions with FPs provide a comprehensive relationship between the response variable and its predictors, such as median and extremely high-BP measures that may be often required in practical data analysis generally. To the best of our knowledge, this is new in the literature.
View Article and Find Full Text PDFJ Appl Stat
June 2024
Department of Biostatistics, University of Florida, Gainesville, FL, USA.
Due to the tremendous heterogeneity of disease manifestations, many complex diseases that were once thought to be single diseases are now considered to have disease subtypes. Disease subtyping analysis, that is the identification of subgroups of patients with similar characteristics, is the first step to accomplish precision medicine. With the advancement of high-throughput technologies, omics data offers unprecedented opportunity to reveal disease subtypes.
View Article and Find Full Text PDFMol Autism
January 2025
Department of Special Education, University of Haifa, Haifa, Israel.
Background: Alterations in sensory perception, a core phenotype of autism, are attributed to imbalanced integration of sensory information and prior knowledge during perceptual statistical (Bayesian) inference. This hypothesis has gained momentum in recent years, partly because it can be implemented both at the computational level, as in Bayesian perception, and at the level of canonical neural microcircuitry, as in predictive coding. However, empirical investigations have yielded conflicting results with evidence remaining limited.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Rheumatology and Immunology, Peking University Third Hospital, No. 49, North Garden Road, Beijing, 100191, China.
Background: Sjogren syndrome (SS) is a chronic systemic autoimmune disease and its pathogenesis often involves the participation of numerous immune cells and inflammatory factors. Despite increased researches and studies recently focusing on this area, it remains to be fully elucidated. We decide to incorporate genetic insight into investigation of the causal link between various immune cells, inflammatory factors and pathogenesis of Sjogren syndrome (SS).
View Article and Find Full Text PDFACS Nano
January 2025
Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada.
Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!