Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rationale: Dissociation of biomolecules by tandem mass spectrometry (MS/MS) generates a variety of fragment ions which provide useful information for the structural characterization of biomolecules. Different fragmentation strategies result in different mass spectra for the same molecule and thus provide distinct features. Charge carriers play important roles in determining the dissociation pathways of the target precursor ions. The use of various transition metals ions as charge carriers of glycopeptide and glycan might provide additional structural information and needs to be investigated.
Methods: A 9.4 T SolariX FTICR mass spectrometer was used for collision-induced dissociation (CID) of glycopeptide and glycan. Group IIB metal ions, including Zn , Cd and Hg , were used as charge carriers. Glycopeptide NLTK-M G and glycan G1F were used as the model systems.
Results: For Zn - and Cd -adducted species, cross-ring cleavages, glycosidic cleavages and cleavages along the peptide backbone could be obtained. There is a high degree of similarity in their CID spectra with that of Mg ion-adducted glycopeptide species. For Hg -adducted species, only glycosidic cleavages were observed in high abundance. The formation of doubly-charged ions (M ) and a series of [f-H] fragments indicated unique dissociation pathways for Hg -adducted glycopeptide.
Conclusions: Zn and Cd -adducted glycopeptide species produced similar dissociation CID spectra, whereas Hg -adducted species produced significantly different CID spectra. Similar CID dissociation features were also observed for Group IIB metal ions adducted glycan species. These results demonstrated that different metal ions might be used to tune the dissociation behaviors of glycopeptides and glycans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.9424 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!