The existing fellowship imaging informatics curriculum, established in 2004, has not undergone formal revision since its inception and inaccurately reflects present-day radiology infrastructure. It insufficiently equips trainees for today's informatics challenges as current practices require an understanding of advanced informatics processes and more complex system integration. We sought to address this issue by surveying imaging informatics fellowship program directors across the country to determine the components and cutline for essential topics in a standardized imaging informatics curriculum, the consensus on essential versus supplementary knowledge, and the factors individual programs may use to determine if a newly developed topic is an essential topic. We further identified typical program structural elements and sought fellowship director consensus on offering official graduate trainee certification to imaging informatics fellows. Here, we aim to provide an imaging informatics fellowship director consensus on topics considered essential while still providing a framework for informatics fellowship programs to customize their individual curricula.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9984571PMC
http://dx.doi.org/10.1007/s10278-022-00702-yDOI Listing

Publication Analysis

Top Keywords

imaging informatics
24
informatics fellowship
20
informatics
9
informatics curriculum
8
fellowship director
8
director consensus
8
fellowship
7
imaging
6
fellowship curriculum
4
curriculum building
4

Similar Publications

Improving Industrial Quality Control: A Transfer Learning Approach to Surface Defect Detection.

Sensors (Basel)

January 2025

Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.

To automate the quality control of painted surfaces of heating devices, an automatic defect detection and classification system was developed by combining deflectometry and bright light-based illumination on the image acquisition, deep learning models for the classification of non-defective (OK) and defective (NOK) surfaces that fused dual-modal information at the decision level, and an online network for information dispatching and visualization. Three decision-making algorithms were tested for implementation: a new model built and trained from scratch and transfer learning of pre-trained networks (ResNet-50 and Inception V3). The results revealed that the two illumination modes employed widened the type of defects that could be identified with this system, while maintaining its lower computational complexity by performing multi-modal fusion at the decision level.

View Article and Find Full Text PDF

Fluorescence imaging has been widely used in fields like (pre)clinical imaging and other domains. With advancements in imaging technology and new fluorescent labels, fluorescence lifetime imaging is gradually gaining recognition. Our research department is developing the CAM, based on the Current-Assisted Photonic Sampler, to achieve real-time fluorescence lifetime imaging in the NIR (700-900 nm) region.

View Article and Find Full Text PDF

This paper presents an approach for event recognition in sequential images using human body part features and their surrounding context. Key body points were approximated to track and monitor their presence in complex scenarios. Various feature descriptors, including MSER (Maximally Stable Extremal Regions), SURF (Speeded-Up Robust Features), distance transform, and DOF (Degrees of Freedom), were applied to skeleton points, while BRIEF (Binary Robust Independent Elementary Features), HOG (Histogram of Oriented Gradients), FAST (Features from Accelerated Segment Test), and Optical Flow were used on silhouettes or full-body points to capture both geometric and motion-based features.

View Article and Find Full Text PDF

Assessing vines' vigour is essential for vineyard management and automatization of viticulture machines, including shaking adjustments of berry harvesters during grape harvest or leaf pruning applications. To address these problems, based on a standardized growth class assessment, labeled ground truth data of precisely located grapevines were predicted with specifically selected Machine Learning (ML) classifiers (Random Forest Classifier (RFC), Support Vector Machines (SVM)), utilizing multispectral UAV (Unmanned Aerial Vehicle) sensor data. The input features for ML model training comprise spectral, structural, and texture feature types generated from multispectral orthomosaics (spectral features), Digital Terrain and Surface Models (DTM/DSM- structural features), and Gray-Level Co-occurrence Matrix (GLCM) calculations (texture features).

View Article and Find Full Text PDF

An Investigation of the Domain Gap in CLIP-Based Person Re-Identification.

Sensors (Basel)

January 2025

Department of Informatics-Science and Engineering (DISI), University of Bologna, 40126 Bologna, Italy.

Person re-identification (re-id) is a critical computer vision task aimed at identifying individuals across multiple non-overlapping cameras, with wide-ranging applications in intelligent surveillance systems. Despite recent advances, the domain gap-performance degradation when models encounter unseen datasets-remains a critical challenge. CLIP-based models, leveraging multimodal pre-training, offer potential for mitigating this issue by aligning visual and textual representations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!