Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite the fact that 5-fluorouracil (5-FU) is the backbone for chemotherapy in colorectal cancer (CRC), the response rates in patients is limited to 50%. The mechanisms underlying 5-FU toxicity are debated, limiting the development of strategies to improve its efficacy. How fundamental aspects of cancer, such as driver mutations and phenotypic heterogeneity, relate to the 5-FU response remains obscure. This largely relies on the limited number of studies performed in pre-clinical models able to recapitulate the key features of CRC. Here, we analyzed the 5-FU response in patient-derived organoids that reproduce the different stages of CRC. We find that 5-FU induces pyrimidine imbalance, which leads to DNA damage and cell death in the actively proliferating cancer cells deficient in p53. Importantly, p53-deficiency leads to cell death due to impaired cell cycle arrest. Moreover, we find that targeting the Warburg effect in KRAS glycolytic tumor organoids enhances 5-FU toxicity by further altering the nucleotide pool and, importantly, without affecting non-transformed WT cells. Thus, p53 emerges as an important factor in determining the 5-FU response, and targeting cancer metabolism in combination with replication stress-inducing chemotherapies emerges as a promising strategy for CRC treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622833 | PMC |
http://dx.doi.org/10.1038/s42003-022-04055-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!