The most significant issue affecting the electric efficiency of solar panels is overheating. Concentration photovoltaic (CPV) modules work by converting approximately 80% of sunlight to heat; this may exceed the cell operating temperature limits. Therefore, thermal management is the best choice for keeping such panels working under specified conditions. Prior to producing an actual solar indoor unit, the current research primarily focuses on optimizing the heat sink dimensions that affect the cooling performance of the solar panel. Two parametric studies were employed to optimize the microchannel heat sink design. First, a two-dimensional numerical study was implemented to optimize the best channel height for more uniform flow inside a double-layer microchannel heat sink (DL-MCHS); the width of channels was kept as a constant value. Second, a three-dimensional conjugate heat transfer model for fluid flow in the optimized heat sink was used to optimize the inlet/outlet header length. To evaluate the overall CPV performance, a further numerical case study was carried out for the optimized designs at a wide range of inlet mass flow rates and steady-state heat flux. The findings indicated that a channel height of 0.5 mm and a header length of 20 mm were the best design points for the suggested heat sink. To assess the effectiveness of a solar/thermal module, the selected design points were applied to a 3D model. The maximum electricity efficiency measured was 17.45%, nearly 40% greater than the typical CPV/T system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9622875PMC
http://dx.doi.org/10.1038/s41598-022-23061-8DOI Listing

Publication Analysis

Top Keywords

heat sink
24
microchannel heat
12
heat
9
double-layer microchannel
8
solar panel
8
thermal management
8
channel height
8
header length
8
design points
8
sink
6

Similar Publications

With the rising demand of electric vehicles (EVs) and hybrid electric vehicles (HEVs), the necessity for efficient thermal management of Lithium-Ion Batteries (LIB) becomes more crucial. Over the past few years, thermoelectric coolers (TEC) have been increasingly used to cool LIBs effectively. This study provides a comprehensive analysis of thermoelectric technologies for improving the thermal management in LIB Systems.

View Article and Find Full Text PDF

Treating colorectal liver metastases (CLMs) located at the hepatocaval confluence with surgery is challenging due to its complexity and associated high risks of perioperative mortality and morbidity. Moreover, thermal ablation techniques are sensitive to the "heat-sink" effect, which reduces their efficacy when tumors are in contact with major blood vessels. In this study we evaluated the feasibility and safety of an intraoperative high-intensity focused ultrasound (HIFU) device for destroying liver tissue volumes sufficiently large to consider treating CLMs at the hepatocaval confluence.

View Article and Find Full Text PDF

Study of the N2 vibrational relaxation behaviors via the CO rovibrational thermometry.

J Chem Phys

December 2024

Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

This paper performed a comprehensive study of the thermal nonequilibrium effects of CO/Ar mixtures with various degrees of N2 additions and probed the N2 relaxation behaviors via the CO rovibrational thermometry. The rovibrational temperature time histories of shock-heated CO/N2/Ar mixtures were measured via a laser-absorption technique, and the corresponding vibrational relaxation data were summarized at 1890-3490 K. The measured results were compared with predictions from the Schwartz-Slawsky-Herzfeld (SSH) formula and the state-to-state (StS) approach (treating CO and N2 as pseudo-species).

View Article and Find Full Text PDF

Low latency carbon budget analysis reveals a large decline of the land carbon sink in 2023.

Natl Sci Rev

December 2024

Laboratoire des Sciences du Climat et de l'Environnement, University Paris Saclay CEA CNRS, Gif sur Yvette 91191, France.

In 2023, the CO growth rate was 3.37 ± 0.11 ppm at Mauna Loa, which was 86% above that of the previous year and hit a record high since observations began in 1958, while global fossil fuel CO emissions only increased by 0.

View Article and Find Full Text PDF

Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice.

Cell

December 2024

Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%-13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (CWINs) in elite rice and tomato cultivars. HSE insertion endows CWINs with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!