A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Absorbable Electrospun Poly-4-hydroxybutyrate Scaffolds as a Potential Solution for Pelvic Organ Prolapse Surgery. | LitMetric

Absorbable Electrospun Poly-4-hydroxybutyrate Scaffolds as a Potential Solution for Pelvic Organ Prolapse Surgery.

ACS Appl Bio Mater

Department of Obstetrics and Gynecology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZAmsterdam, The Netherlands.

Published: November 2022

Women with pelvic organ prolapse (POP) have bothersome complaints that significantly affect their quality of life. While native tissue repair is associated with high recurrence rates, polypropylene knitted implants have caused specific implant-related adverse events that have detrimental, often irreversible, effects. We hypothesize that surgical outcome can be improved with a tissue-engineered solution using an absorbable implant that mimics the natural extracellular matrix (ECM) structure, releases estrogen, and activates collagen metabolism by fibroblasts as the main regulators of wound healing. To this aim, we produced electrospun poly-4-hydroxybutyrate (P4HB) scaffolds and biofunctionalized them with estradiol (E2). The cell-implant interactions relevant for POP repair were assessed by seeding primary POP vaginal fibroblasts isolated from patients on electrospun P4HB scaffolds with 1%, 2%, or 5% E2 and without E2. To test our hypothesis on whether ECM mimicking structures should improve regeneration, electrospun P4HB was compared to knitted P4HB implants. We evaluated vaginal fibroblast proliferation, ECM deposition, and metabolism by quantification of collagen, elastin, and matrix metalloproteinases and by gene expression analysis for 28 days. We established effective E2 drug loading with a steady release over time. Significantly higher cell proliferation, collagen-, and elastin deposition were observed on electrospun P4HB scaffolds as compared to knitted P4HB. For this study, physical properties of the scaffolds were more determinant on the cell response than the release of E2. These results indicate that making these electrospun P4HB scaffolds E2-releasing appears to be technically feasible. In addition, electrospun P4HB scaffolds promote the cellular response of vaginal fibroblasts and further studies are merited to assess if their use results in improved surgical outcomes in case of POP repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682484PMC
http://dx.doi.org/10.1021/acsabm.2c00691DOI Listing

Publication Analysis

Top Keywords

p4hb scaffolds
20
electrospun p4hb
20
electrospun poly-4-hydroxybutyrate
8
pelvic organ
8
organ prolapse
8
p4hb
8
pop repair
8
vaginal fibroblasts
8
compared knitted
8
knitted p4hb
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!