Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Homologs of mammalian innate immune sensing and downstream pathway proteins have been discovered in a variety of basal invertebrates, including cnidarians and sponges, as well as some single-celled protists. Although the structures of these proteins vary among the basal organisms, many of the activities found in their mammalian counterparts are conserved. This is especially true for the Toll-like receptor (TLR) and cGAS-STING pathways that lead to downstream activation of transcription factor NF-κB. In this short perspective, we describe the evidence that TLR and cGAS-STING signaling to NF-κB is also involved in immunity in basal animals, as well as in the maintenance of microbial symbionts. Different from terrestrial animals, immunity in many marine invertebrates might have a constitutively active state (to protect against continual exposure to resident or waterborne microbes), as well as a hyperactive state that can be induced by pathogens at both transcriptional and posttranscriptional levels. Research on basal immunity may be important for (1) understanding different approaches that organisms take to sensing and protecting against microbes, as well as in maintaining microbial symbionts; (2) the identification of novel antimicrobial effector genes and processes; and (3) the molecular pathways that are being altered in basal marine invertebrates in the face of the effects of a changing environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621439 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1010897 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!