A Sulfoxide Reagent for One-Pot, Three-Component Syntheses of Sulfoxides and Sulfinamides.

Angew Chem Int Ed Engl

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany.

Published: December 2022

Sulfoxides and sulfinamides represent versatile sulfur functional groups found in ligands, chiral auxiliaries, and bioactive molecules. Canonical two-component syntheses, however, rely on substrates with a preinstalled C-S bond and impede efficient and modular access to these sulfur motifs. Herein is presented the application of an easily prepared, bench-stable sulfoxide reagent for one-pot, three-component syntheses of sulfoxides and sulfinamides. The sulfoxide reagent donates the SO unit upon the reaction with a Grignard reagent (RMgX) as a sulfenate anion (RSO ). While subsequent trapping reactions of this key intermediate with carbon electrophiles provide sulfoxides, a range of tertiary, secondary, and primary sulfinamides can be prepared by substitution reactions with electrophilic amines. The syntheses of sulfinamide analogs of amide- and sulfonamide-containing drugs illustrate the utility of the method for the rapid preparation of medicinally relevant molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100148PMC
http://dx.doi.org/10.1002/anie.202213872DOI Listing

Publication Analysis

Top Keywords

sulfoxide reagent
12
sulfoxides sulfinamides
12
reagent one-pot
8
one-pot three-component
8
three-component syntheses
8
syntheses sulfoxides
8
syntheses
4
sulfoxides
4
sulfinamides
4
sulfinamides sulfoxides
4

Similar Publications

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.

View Article and Find Full Text PDF

[Anti-skin Aging Effects of Kale-derived Exosome-like Nanoparticles].

Yakugaku Zasshi

January 2025

Department of Agriculture, Graduate School of Science and Technology, Shinshu University.

In an aging society, there is a growing interest in functional foods that offer anti-aging benefits. Food-derived bioactive compounds such as carotenoids and polyphenols can enhance skin elasticity and delay aging. However, the mechanisms by which these orally ingested compounds directly impact the skin are not fully understood.

View Article and Find Full Text PDF

A strategy for the synthesis of 1--substituted thioglycals was developed from cyclic carbohydrate-derived ketene dithioacetals in a four-step sequence. The corresponding thioglycals, in two carbohydrate series, were first obtained by removal of the exocyclic glycosyl sulfoxide, followed by treatment with an organolithium reagent. Various electrophilic groups were introduced onto the thioglycal double bond after deprotonation and formation of a glycosyl lithium intermediate.

View Article and Find Full Text PDF

Background/objectives: Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, for which a definitive cure is still missing. Recently, natural compounds have been investigated for their possible neuroprotective role, including the bioactivated product of glucoraphanin (GRA), the sulforaphane (SFN), which is highly rich in cruciferous vegetables. It is known that SFN alleviates neuronal dysfunction, apoptosis, and oxidative stress in the brain.

View Article and Find Full Text PDF

Broccoli is recognized for its health benefits, attributed to the high concentrations of glucoraphanin (GR). GR must be hydrolyzed by myrosinase (Myr) to form the bioactive sulforaphane (SF). The primary challenge in delivering SF in the upper gastrointestinal (GI) tract- is improving hydrolysis of GR to SF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!