Download full-text PDF

Source
http://dx.doi.org/10.1021/ac00142a023DOI Listing

Publication Analysis

Top Keywords

high-resolution gas
4
gas chromatographic/high-resolution
4
chromatographic/high-resolution mass
4
mass spectrometric
4
spectrometric analysis
4
analysis human
4
human serum
4
serum whole-weight
4
whole-weight lipid
4
lipid basis
4

Similar Publications

Squeezed dual-comb spectroscopy.

Science

January 2025

Department of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, CO, USA.

Optical frequency combs have enabled unique advantages in broadband, high-resolution spectroscopy and precision interferometry. However, quantum mechanics ultimately limits the metrological precision achievable with laser frequency combs. Quantum squeezing has led to significant measurement improvements with continuous wave lasers, but experiments demonstrating metrological advantage with squeezed combs are less developed.

View Article and Find Full Text PDF

Ab initio study on the dynamics and spectroscopy of collective rovibrational polaritons.

J Chem Phys

January 2025

Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary.

Accurate rovibrational molecular models are employed to gain insight in high-resolution into the collective effects and intermolecular processes arising when molecules in the gas phase interact with a resonant infrared (IR) radiation mode. An efficient theoretical approach is detailed, and numerical results are presented for the HCl, H2O, and CH4 molecules confined in an IR cavity. It is shown that by employing a rotationally resolved model for the molecules, revealing the various cavity-mediated interactions between the field-free molecular eigenstates, it is possible to obtain a detailed understanding of the physical processes governing the energy level structure, absorption spectra, and dynamic behavior of the confined systems.

View Article and Find Full Text PDF

We present a new, to the best of our knowledge, approach for self-heterodyne optical frequency comb (OFC) spectroscopy in which a single Mach-Zehnder modulator is utilized to generate both an optical frequency comb and a frequency-shifted local oscillator. This method allows for coherent, time-domain averaging to be performed without the need for feedback mechanisms or software corrections. As an initial demonstration, we have measured acetylene rovibrational transition frequencies with coherently averaged comb spectra.

View Article and Find Full Text PDF

This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).

View Article and Find Full Text PDF

Precise patterning of sensing materials, particularly the long-range-ordered assembly of micro/nanostructures, is pivotal for improving sensor performance, facilitating miniaturization, and enabling seamless integration. This paper examines the importance of interfacial confined assembly in sensor patterning, including gas-liquid and liquid-liquid confined assembly, wettability-assisted or microstructure-assisted solid-liquid interfacial confined assembly, and tip-induced confined assembly. The application of capillary bridge confined assembly technology in chemical sensors, flexible electronics, and optoelectronics is highlighted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!