Genome-wide association studies of breast cancer susceptibility have revealed risk-associated genetic variants and nominated candidate genes; however, the identification of causal variants and genes is often undetermined by genome-wide association studies. Comparative genomics, utilizing Rattus norvegicus strains differing in susceptibility to mammary tumor development, is a complimentary approach to identify breast cancer susceptibility genes. Mammary carcinoma susceptibility 3 (Mcs3) is a Copenhagen (COP/NHsd) allele that confers resistance to mammary carcinomas when introgressed into a mammary carcinoma susceptible Wistar Furth (WF/NHsd) genome. Here, Mcs3 was positionally mapped to a 7.2-Mb region of RNO1 spanning rs8149408 to rs107402736 (chr1:143700228-150929594, build 6.0/rn6) using WF.COP congenic strains and 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis. Male and female WF.COP-Mcs3 rats had significantly lower body mass compared to the Wistar Furth strain. The effect on female body mass was observed only when females were raised in the absence of males indicating a socioenvironmental interaction. Furthermore, female WF.COP-Mcs3 rats, raised in the absence of males, did not develop enhanced lobuloalveolar morphologies compared to those observed in the Wistar Furth strain. Human 15q25.1-25.2 was determined to be orthologous to rat Mcs3 (chr15:80005820-82285404 and chr15:83134545-84130720, build GRCh38/hg38). A public database search of 15q25.1-25.2 revealed genome-wide significant and nominally significant associations for body mass traits and breast cancer risk. These results support the existence of a breast cancer risk-associated allele at human 15q25.1-25.2 and warrant ultrafine mapping of rat Mcs3 and human 15q25.1-25.2 to discover novel causal genes and variants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9836357 | PMC |
http://dx.doi.org/10.1093/g3journal/jkac288 | DOI Listing |
Seizure
January 2025
Division of Neurology, Saitama Children's Medical Center, Saitama, Japan.
Tissue Cell
January 2025
Department of Human and Animal Physiology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia; Research Institute of Biology, Yerevan State University, Yerevan, 1 Alek Manukyan St, Yerevan 0025, Armenia. Electronic address:
High altitude characterized by the low partial pressure of the oxygen is a life-threatening condition that contributes to the development of acute pulmonary edema and hypoxic lung injury. In this study, we aimed to investigate the contribution of some inflammatory and oxidative stress markers along with antioxidant system enzymes in the pathogenesis of HAPE (high-altitude pulmonary edema) formation. We incorporated the study on 42 male rats to unravel the role of mast cells (MCs) and TNF-α in the lung after the effect of acute hypobaric hypoxia.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
January 2025
Department of Chemistry, Yale University, New Haven, Connecticut, USA;
Protein glycosylation, the covalent attachment of carbohydrate, or glycan, structures onto the protein backbone, is one of the most complex and heterogeneous post-translational modifications (PTMs). Extracellular protein glycosylation, in particular N- and mucin-type O-glycosylation, plays pivotal roles in a number of biophysical and biochemical processes, such as protein folding and stability, cell adhesion, signaling, and protection. As such, aberrant glycosylation is implicated in a variety of diseases, including cancer.
View Article and Find Full Text PDFAnnu Rev Anal Chem (Palo Alto Calif)
January 2025
2School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; email:
Mass spectrometry-based proteomics and metaproteomics have long been used in the study of human microbiomes, with the potential of metaproteomics only recently being fully harnessed. This progress is due to the advancements of high-performance mass spectrometers, innovative proteomics strategies, and the development of dedicated bioinformatics tools. In this review, we critically examine the recent technological developments that enhance the application of metaproteomics in clinical microbiome analysis.
View Article and Find Full Text PDFACS Nano
January 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China.
Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!