A template-free assembly of Cu,N-codoped hollow carbon nanospheres as low-cost and highly efficient peroxidase nanozymes.

Analyst

CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.

Published: November 2022

Developing carbon-based materials with high catalytic performance and sensitivity has significance in low-cost and highly efficient nanozymes. Herein, for the first time, Cu,N-codoped hollow carbon nanospheres (CuNHCNs) with highly active Cu-Nx sites were successfully assembled through a template-free strategy, in which Cu-poly(-phenylenediamine) (Cu-PmPD) nanospheres were utilized as the source of Cu, N and C. Benefiting from the synergistic effect of the hollow spherical structure and optimized composition, the CuNHCN exhibits high affinity for 3,3',5,5'-tetramethylbenzidine and HO with 0.0655 mM and 0.918 mM, respectively, which are superior to those of HRP and most metal-based nanozymes. Moreover, by employing glucose and ascorbic acid (AA) as biomolecule models, a CuNHCN-based colorimetric detection platform is developed. The CuNHCN exhibits superior peroxidase mimicking activity and sensitivity in detecting glucose and AA with a detection limit of 0.187 μM and 68.9 nM (S/N = 3), respectively. Also, the colorimetric detection based on the CuNHCN towards glucose and AA in human serum presents superior practicability and accuracy. The assay provides a new avenue for designing and fabricating low-cost peroxidase nanozymes with high performance in bioassays.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2an01488bDOI Listing

Publication Analysis

Top Keywords

cun-codoped hollow
8
hollow carbon
8
carbon nanospheres
8
low-cost highly
8
highly efficient
8
peroxidase nanozymes
8
cunhcn exhibits
8
colorimetric detection
8
template-free assembly
4
assembly cun-codoped
4

Similar Publications

Statement Of Problem: Different factors affect 3-dimensionally (3D) printed resin products. However, evidence on the effect of the print orientation on resin dental devices is lacking.

Purpose: The purpose of this systematic review and meta-analysis was to assess the impact of print orientation on the properties and accuracy of 3D printed implant surgical guides, occlusal devices, clear orthodontic retainers, and aligners.

View Article and Find Full Text PDF

The main advantages of microneedles are precise drug delivery through human skin, minimal tissue damage and painlessness. We conducted structural analysis and skin puncture studies of hollow microneedles using ANSYS for three materials: Hafnium Dioxide (HfO), Polyglycolic acid (PGA) and Polylactic acid (PLA). Firstly, we selected three lengths, three tip diameters and three base diameters to conduct a L(3) orthogonal experiment.

View Article and Find Full Text PDF

Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc.

View Article and Find Full Text PDF

A unified model for droplet receding contact angles on hydrophobic pillar, pore, and hollowed pillar arrays.

J Colloid Interface Sci

December 2024

Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China.

Hypothesis: Current models for receding contact angles of Cassie-Baxter state droplets on textured hydrophobic substrates are applicable only to a specific structural type, e.g., pillar (above which a droplet has isolated contact line and continuous liquid-vapor interface) or pore (continuous contact line and isolated liquid-vapor interface), signifying a lack of universality.

View Article and Find Full Text PDF

Fabrication of photo-responsive self-deicing surface with micro-nano rough structures on fabrics.

J Colloid Interface Sci

December 2024

Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China; Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui, Zhejiang 323000, PR China; Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, PR China.

Photothermal superhydrophobic treatment is an effective anti-icing and de-icing method, avoiding damage to equipment caused by ice accumulation in winter. However, the traditional photothermal materials were expensive and the photothermal conversion coatings are hard to remove when unnecessary. Herein, three biochar microspheres with solid, hollow, and flower-like structures (SBMs, HBMs, FBMs) were fabricated to construct photothermal superhydrophobic coatings on the polyester fabric (PET), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!