Engineered hydrogels with excellent mechanical properties and multi-functionality have great potential as soft electronic skins, tissue substitutes and flexible robotic joints. However, it has been a challenge to construct multifunctional hydrogels, especially when integrating high stretchability, toughness and strength, low hysteresis, good self-healing and adhesion abilities into a hydrogel system simultaneously. Here, we successfully developed a structural hydrogel composed of a reversible covalently cross-link-based poly--(2-hydroxyethyl)acrylamide (PHEMAA) network and available plastically deformable casein micelles. Such a design enabled the reversible covalent cross-links and casein micelles to enhance energy dissipation and toughen the PHEMAA/casein hybrid hydrogel synergistically. More importantly, the hydrogel could respond to the imposed strains reversibly by cross-link and micelle deformation induced-network reconstitution, which led to low hysteresis of the hydrogels. The recoverable gel networks still exhibited their effects on energy dissipation at the stress-focused area, endowing the hydrogels with fatigue resistance. As a result, the hydrogels exhibited a compressive strength of 36.5 MPa, high stretchability (1460%), high toughness (∼5.98 MJ m), low hysteresis (<30%) and fatigue resistance with almost completely overlapped hysteresis curves during 10 loading cycles. In addition, the introduction of casein micelles and reversible covalent bonding endowed the elastomer hydrogels with high adhesivity, self-healing abilities and biocompatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb02015gDOI Listing

Publication Analysis

Top Keywords

low hysteresis
12
high stretchability
8
casein micelles
8
energy dissipation
8
hydrogel
5
hydrogels
5
highly stretchable
4
stretchable self-healing
4
self-healing elastomer
4
elastomer hydrogel
4

Similar Publications

A stacked nanocomposite zinc-tin oxide/single-walled carbon nanotubes (ZTO/SWNTs) active layer was fabricated for thin-film transistors (TFTs) as an alternative to the conventional single-layer structure of mixed ZTO and SWNTs. The stacked nanocomposite of the solution-processed TFTs was prepared using UV/O treatment and multiple annealing steps for each layer. The electrical properties of the stacked device were superior to those of the single-layer TFT.

View Article and Find Full Text PDF

Potassium metal batteries are emerging as a promising high-energy density storage solution, valued for their cost-effectiveness and low electrochemical potential. However, understanding the role of potassiphilic sites in nucleation and growth remains challenging. This study introduces a single-atom iron, coordinated by nitrogen atoms in a 3D hierarchical porous carbon fiber (Fe─N-PCF), which enhances ion and electron transport, improves nucleation and diffusion kinetics, and reduces energy barriers for potassium deposition.

View Article and Find Full Text PDF

Research on manipulating materials using light has garnered significant interest, yet examples of controlling electronic polarization in magnetic materials remain scarce. Here, the hysteresis of electronic polarization in the anti-ferromagnetic semiconductor FePS is demonstrated via light. Below the Néel temperature, linear dichroism (i.

View Article and Find Full Text PDF

Searching for single-molecule magnets (SMM) with large effective blocking barriers, long relaxation times, and high magnetic blocking temperatures is vitally important not only for the fundamental research of magnetism at the molecular level but also for the realization of new-generation magnetic memory unit. Actinides (An) atoms possess extremely strong spin-orbit coupling (SOC) due to their 5 orbitals, and their ground multiplets are largely split into several sublevels because of the strong interplay between the SOC of An atoms and the crystal field (CF) formed by ligand atoms. Compared to TM-based SMMs, more dispersed energy level widths of An-based SMMs will give a larger total zero field splitting (ZFS) and thus provide a necessary condition to derive a higher .

View Article and Find Full Text PDF

High-k metal oxides are gradually replacing the traditional SiO dielectric layer in the new generation of electronic devices. In this paper, we report the production of five-element high entropy metal oxides (HEMOs) dielectric films by solution method and analyzed the role of each metal oxide in the system by characterizing the film properties. On this basis, we found optimal combination of (AlGaTiYZr)O with the best dielectric properties, exhibiting a low leakage current of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!