Background: Transketolase (TKT), a key rate-limiting enzyme in the non-oxidative branch of the pentose phosphate pathway (PPP), provides more than 85% of the ribose required for de novo nucleotide biosynthesis and promotes the development of hepatocellular carcinoma (HCC). Pharmacologic inhibition of TKT could impede HCC development and enhance treatment efficacy. However, no safe and effective TKT inhibitor has been approved.

Methods: An online two-dimensional TKT protein immobilised biochromatographic system was established for high-throughput screening of TKT ligands. Oroxylin A was found to specifically bind TKT. Drug affinity responsive target stability, cellular thermal shift assay, surface plasmon resonance, molecular docking, competitive displacement assay, and site mutation were performed to identify the binding of oroxylin A with TKT. Antitumour effects of oroxylin A were evaluated in vitro, in human xenograft mice, diethylnitrosamine (DEN)-induced HCC mice, and patient-derived organoids (PDOs). Metabolomic analysis was applied to detect the enzyme activity. Transcriptome profiling was conducted to illustrate the anti-HCC mechanism of oroxylin A. TKT knocking-down HCC cell lines and PDOs were established to evaluate the role of TKT in oroxylin A-induced HCC suppression.

Results: By targeting TKT, oroxylin A stabilised the protein to proteases and temperature extremes, decreased its activity and expression, resulted in accumulation of non-oxidative PPP substrates, and activated p53 signalling. In addition, oroxylin A suppressed cell proliferation, induced apoptosis and cell-cycle arrest, and inhibited the growth of human xenograft tumours and DEN-induced HCC in mice. Crucially, TKT depletion exerted identical effects to oroxylin A, and the promising inhibitor also exhibited excellent therapeutic efficacy against clinically relevant HCC PDOs.

Conclusions: These results uncover a unique role for oroxylin A in TKT inhibition, which directly targets TKT and suppresses the non-oxidative PPP. Our findings will facilitate the development of small-molecule inhibitors of TKT and novel therapeutics for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9619225PMC
http://dx.doi.org/10.1002/ctm2.1095DOI Listing

Publication Analysis

Top Keywords

tkt
14
oroxylin tkt
12
oroxylin
10
suppresses non-oxidative
8
pentose phosphate
8
phosphate pathway
8
hepatocellular carcinoma
8
mice patient-derived
8
patient-derived organoids
8
hcc
8

Similar Publications

Transketolase attenuates the chemotherapy sensitivity of glioma cells by modulating R-loop formation.

Cell Rep

January 2025

Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China; National Center for Neurological Disorders, Shanghai 200040, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China; Neurosurgical Institute of Fudan University, Shanghai 200040, China; Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China. Electronic address:

Glioblastoma (GBM) is a highly lethal malignant brain tumor with poor survival rates, and chemoresistance poses a significant challenge to the treatment of patients with GBM. Here, we show that transketolase (TKT), a metabolic enzyme in the pentose phosphate pathway (PPP), attenuates the chemotherapy sensitivity of glioma cells in a manner independent of catalytic activity. Mechanistically, chemotherapeutic drugs can facilitate the translocation of TKT protein from the cytosol into the nucleus, where TKT physically interacts with XRN2 to regulate the resolution and removal of R-loops.

View Article and Find Full Text PDF

Objectives: Comparative assessment of the effectiveness of coronally advanced flap (CAF) with subepithelial connective tissue graft (SCTG) and the envelope technique with SCTG in Miller's Class I recession utilizing soft tissue-cone-beam computed tomography (ST-CBCT) and root coverage esthetic score (RES).

Materials And Methods: Twenty patients were randomly assigned to Group I (CAF + SCTG) and Group II (envelope technique + SCTG) using the coin toss method, with 10 patients in each group. Recession height (RH) and width (RW), probing pocket depth (PD), clinical attachment level (CAL), and keratinized tissue height (HKT) were assessed at baseline and 6 months.

View Article and Find Full Text PDF

Background: The innate immune system serves as the host's first line of defense against invading pathogens. Stimulator of interferon genes (STING) is a key component of this system, yet its relationship with glucose metabolism, particularly in antiviral immunity, remains underexplored.

Methods: Metabolomics analysis was used for detecting metabolic alterations in spleens from STING knockout (KO) and wild-type (WT) mice.

View Article and Find Full Text PDF

In cells, the main enzymes involved in pentose interconversion are ribose-5-phosphate isomerases RpiA and RpiB and ribulose-5-phosphate epimerase Rpe. The inactivation of limits ribose-5-phosphate (R5P) synthesis via the oxidative branch of the pentose phosphate pathway (PPP) and unexpectedly results in antibiotic supersensitivity. This type of metabolism is accompanied by significant changes in the level of reducing equivalents of NADPH and glutathione, as well as a sharp drop in the ATP pool.

View Article and Find Full Text PDF

Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations across space, including their sign, magnitude, causes and characteristic scales. These have important implications for metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local, regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and decadal timescales and explored the relationship of synchrony to geographical distance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!