Developmental selection of neurons and synapses so as to maximize pulse synchrony has recently been used to explain antenatal cortical development. Consequences of the same selection process-an application of the Free Energy Principle-are here followed into the postnatal phase in V1, and the implications for cognitive function are considered. Structured inputs transformed lag relay in superficial patch connections lead to the generation of circumferential synaptic connectivity superimposed upon the antenatal, radial, "like-to-like" connectivity surrounding each singularity. The spatiotemporal energy and dimension reduction models of cortical feature preferences are accounted for and unified within the expanded model, and relationships of orientation preference (OP), space frequency preference (SFP), and temporal frequency preference (TFP) are resolved. The emergent anatomy provides a basis for "active inference" that includes interpolative modification of synapses so as to anticipate future inputs, as well as learn directly from present stimuli. Neurodynamic properties are those of heteroclinic networks with coupled spatial eigenmodes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614369PMC
http://dx.doi.org/10.3389/fncom.2022.869268DOI Listing

Publication Analysis

Top Keywords

free energy
8
spatiotemporal energy
8
energy dimension
8
dimension reduction
8
reduction models
8
frequency preference
8
unification free
4
energy
4
energy minimization
4
minimization spatiotemporal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!