AI Article Synopsis

  • The IRIS technique enables advanced super-resolution imaging by using fast-exchanging fluorescent probes that can label many targets at once.
  • Previous methods for creating specific probes were time-consuming, but a new mutagenesis strategy has been developed to streamline this process across various antibody sequences.
  • The research successfully created IRIS probes from several antibody types, allowing for detailed visualization of proteins in neurons, enhancing the ability to study small synaptic connections.

Article Abstract

Image reconstruction by integrating exchangeable single-molecule localization (IRIS) achieves multiplexed super-resolution imaging by high-density labeling with fast exchangeable fluorescent probes. However, previous methods to develop probes for individual targets required a great amount of time and effort. Here, we introduce a method for generating recombinant IRIS probes with a new mutagenesis strategy that can be widely applied to existing antibody sequences. Several conserved tyrosine residues at the base of complementarity-determining regions were identified as candidate sites for site-directed mutagenesis. With a high probability, mutations at candidate sites accelerated the off rate of recombinant antibody-based probes without compromising specific binding. We were able to develop IRIS probes from five monoclonal antibodies and three single-domain antibodies. We demonstrate multiplexed localization of endogenous proteins in primary neurons that visualizes small synaptic connections with high binding density. It is now practically feasible to generate fast-dissociating fluorescent probes for multitarget super-resolution imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9606137PMC
http://dx.doi.org/10.1016/j.crmeth.2022.100301DOI Listing

Publication Analysis

Top Keywords

multiplexed super-resolution
8
super-resolution imaging
8
fluorescent probes
8
iris probes
8
candidate sites
8
probes
6
engineered fast-dissociating
4
fast-dissociating antibody
4
antibody fragments
4
fragments multiplexed
4

Similar Publications

The time-multiplexing super-resolution concept requires post-processing for extracting the super-resolved image. Moreover, to perform the post-processing image restoration, one needs to know the exact high-resolution encoding pattern. Both of these limiting conditions are overcome by the method and experiment reported in this letter.

View Article and Find Full Text PDF

Phasor-FSTM: a new paradigm for multicolor super-resolution imaging of living cells based on fluorescence modulation and lifetime multiplexing.

Light Sci Appl

January 2025

Center for Biomedical Optics and Photonics & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, 518060, China.

Multicolor microscopy and super-resolution optical microscopy are two widely used techniques that greatly enhance the ability to distinguish and resolve structures in cellular imaging. These methods have individually transformed cellular imaging by allowing detailed visualization of cellular and subcellular structures, as well as organelle interactions. However, integrating multicolor and super-resolution microscopy into a single method remains challenging due to issues like spectral overlap, crosstalk, photobleaching, phototoxicity, and technical complexity.

View Article and Find Full Text PDF

The rich diversity of synapses facilitates the capacity of neural circuits to transmit, process and store information. Here, we used multiplex super-resolution proteometric imaging through array tomography to define features of single synapses in the adult mouse neocortex. We find that glutamatergic synapses cluster into subclasses that parallel the distinct biochemical and functional categories of receptor subunits: GluA1/4, GluA2/3 and GluN1/GluN2B.

View Article and Find Full Text PDF

3D ultrasound localization microscopy of the nonhuman primate brain.

EBioMedicine

December 2024

Department of Engineering Physics, Polytechnique Montréal, Montreal, Canada; Montreal Heart Institute, Montreal, Canada. Electronic address:

Background: Haemodynamic changes occur in stroke and neurodegenerative diseases. Developing imaging techniques allowing the in vivo visualisation and quantification of cerebral blood flow would help better understand the underlying mechanism of these cerebrovascular diseases.

Methods: 3D ultrasound localization microscopy (ULM) is a recently developed technology that can map the microvasculature of the brain at large depth and has been mainly used until now in rodents.

View Article and Find Full Text PDF

Antigen retrieval is crucial for immunohistochemistry, particularly in formalin-fixed paraffin-embedded brain tissue, where fixation causes extensive crosslinking that masks epitopes. Heat Induced Epitope Retrieval (HIER) reverses these crosslinks, improving access to nuclear and aggregated proteins. We introduce Cyclic Heat-Induced Epitope Retrieval (CHIER), an advanced technique that builds on HIER by incorporating repeated cycles of heating and cooling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!