During non-rapid eye movement (NREM) sleep, cortical neuron activity alternates between a depolarized (firing, up-state) and a hyperpolarized state (down-state) coinciding with delta electroencephalogram (EEG) slow-wave oscillation (SWO, 0. 5-4 Hz) . Recently, we have found that artificial sleep-like up/down-states can potentiate synaptic strength in layer V cortical neurons . Using mouse coronal brain slices, whole cell voltage-clamp recordings were made from layer V cortical pyramidal neurons to record spontaneous excitatory synaptic currents (sEPSCs) and inhibitory synaptic currents (sIPSCs). Artificial sleep-like up/down-states (as SWOs, 0.5 Hz, 10 min, current clamp mode) were induced by injecting sinusoidal currents into layer V cortical neurons. Baseline pre-SWO recordings were recorded for 5 min and post-SWO recordings for at least 25-30 min. Compared to pre-SWO sEPSCs or sIPSCs, post-SWO sEPSCs or sIPSCs in layer V cortical neurons exhibited significantly larger amplitudes and a higher frequency for 30 min. This finding suggests that both sEPSCs and sIPSCs could be potentiated in layer V cortical neurons by the low-level activity of SWOs, and sEPSCs and sIPSCs maintained a balance in layer V cortical neurons during pre- and post-SWO periods. Overall, this study presents an method to show SWO's ability to induce synaptic plasticity in layer V cortical neurons, which may underlie sleep-related synaptic potentiation for sleep-related memory consolidation .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9615418PMC
http://dx.doi.org/10.3389/fncel.2022.948327DOI Listing

Publication Analysis

Top Keywords

cortical neurons
28
layer cortical
28
sepscs sipscs
16
artificial sleep-like
12
sleep-like up/down-states
12
cortical
9
induce synaptic
8
synaptic plasticity
8
neurons
8
neurons mouse
8

Similar Publications

Motion detection: Specific thalamocortical connections revealed.

Curr Biol

January 2025

Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan; Graduate Institute for Advanced Studies, Sokendai, Hayama, Japan. Electronic address:

Inferring the direction of image motion is an important component of visual processing. A study with in vivo dual electrophysiological recording now reveals that the sensitivity of visual cortical neurons to the direction of motion is established by specific neural connections from the visual thalamus.

View Article and Find Full Text PDF

Recurrent activity propagates through labile ensembles in macaque dorsolateral prefrontal microcircuits.

Curr Biol

December 2024

Department of Pharmacology, Vanderbilt Brain Institute, Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232, USA; Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. Electronic address:

Human and non-human primate studies clearly implicate the dorsolateral prefrontal cortex (dlPFC) as critical for advanced cognitive functions. It is thought that intracortical synaptic architectures within the dlPFC are the integral neurobiological substrate that gives rise to these processes. In the prevailing model, each cortical column makes up one fundamental processing unit composed of dense intrinsic connectivity, conceptualized as the "canonical" cortical microcircuit.

View Article and Find Full Text PDF

Fixational eye movements and edge integration in lightness perception.

Vision Res

January 2025

Department of Psychology, University of Nevada, Reno, NV 89557, United States.

A neural theory of human lightness computation is described and computer-simulated. The theory proposes that lightness is derived from transient ON and OFF cell responses in the early visual pathways that have different characteristic neural gains and that are generated by fixational eye movements (FEMs) as the eyes transit luminance edges in the image. The ON and OFF responses are combined with corollary discharge signals that encode the eye movement direction to create directionally selective ON and OFF responses.

View Article and Find Full Text PDF

Transcranial pulsed current stimulation alleviates neuronal pyroptosis and neurological dysfunction following traumatic brain injury via the orexin-A/NLRP3 pathway.

Neuropeptides

January 2025

Affiliated Rehabilitation Hospital, Jiang Xi Medical College, Nanchang University, Nanchang 330003, Jiangxi, China; Rehabilitation Medicine Clinical Research Center of Jiangxi Province, 330003, Jiangxi, China; Key Laboratory of Jiangxi Provincial Health Commission for DOC Rehabilitation, 330003, Jiangxi, China. Electronic address:

Traumatic brain injury (TBI) is a life-threatening condition with high incidence and mortality rates. The current pharmacological interventions for TBI exhibit limited efficacy, underscoring the necessity to explore novel and effective therapeutic approaches to ameliorate its impact. Previous studies have indicated that transcranial pulsed current stimulation (tPCS) can improve neurofunctional deficits in patients by modulating brain neuroplasticity.

View Article and Find Full Text PDF

Introduction: Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficits in social interaction and communication, along with restricted and repetitive behaviors. Both genetic and environmental factors contribute to ASD, with prenatal exposure to valproic acid (VPA) and nicotine being linked to increased risk. Impaired adult hippocampal neurogenesis, particularly in the ventral region, is thought to play a role in the social deficits observed in ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!