Research is still being carried out to develop specific medications or vaccinations to fight norovirus, a key contributor to foodborne illness. This study evaluated certain plant-based active chemicals as prospective candidates for such treatments using virtual screening techniques and other computer assessments. Twenty (20) plant metabolites were tested against the norovirus VP1, VP2, P48, and P22 protein domains using the molecular docking method. In terms of the lowest global binding energy, Asiatic acid, avicularin, guaijaverin, and curcumin exhibited the highest binding affinity with all selected proteins. Each viral protein's essential binding sites with the potential drugs and drug surface hotspots were uncovered. The ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis was used to further analyze the pharmacological profiles of the top candidates. According to the results, none of the substances showed any adverse consequences that would reduce their drug-like properties. According to the analysis of the toxicity pattern, no detectable tumorigenic, mutagenic, irritating, or reproductive effects of the compounds were discovered. However, among the top four alternatives, curcumin exhibited the highest levels of cytotoxicity and immunotoxicity. These discoveries may open the way for the development of effective norovirus therapies and safety measures. Due to the positive outcomes, we strongly propose more experiments for the experimental validation of our findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613402PMC
http://dx.doi.org/10.1155/2022/8905962DOI Listing

Publication Analysis

Top Keywords

plant metabolites
8
curcumin exhibited
8
exhibited highest
8
in-silico exploration
4
exploration plant
4
metabolites potential
4
potential remedies
4
norovirus
4
remedies norovirus
4
norovirus carried
4

Similar Publications

The mini-cutting physiological condition is vital for the rooting process. For accurate interpretation, considering all mini-cutting responses in an experiment is necessary to identify significant rooting-biomarkers. The study investigates rooting-biomarkers during vegetative propagation, focusing on Ilex paraguariensis (yerba mate) clones of contrasting mini-cutting rooting performance as a case study (i.

View Article and Find Full Text PDF

To illustrate the anti-diabetic properties of Berberis orthobotrys seeds was the aim of the current study. After a series of experiments, two doses of aqueous methanolic extract of the seeds were selected i.e.

View Article and Find Full Text PDF

High-throughput screening of acetogenic strains for growth and metabolite profiles on readily available biomass.

Bioresour Technol

January 2025

Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent, 9000, Belgium; Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, 9042, Belgium. Electronic address:

Abundant biomass, including industrial waste streams and second-generation (2G) and third-generation (3G) feedstocks, offers significant potential for sustainable bioconversion, nevertheless challenges such as fermentation inhibitors, CO losses and substrate selectivity of traditional microbial hosts hinder process efficiency. In this study, we address these challenges by exploring acetogenic bacteria as alternative microbial hosts. Using a newly established high-throughput method, acetogens were evaluated for their capacity to hydrolyse and metabolise variety of substrates derived from 2G and 3G feedstocks and industrial waste streams.

View Article and Find Full Text PDF

Genome-wide identification and expression patterns of uridine diphosphate (UDP)-glycosyltransferase genes in the brown planthopper, Nilaparvata lugens.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China. Electronic address:

Uridine diphosphate-glycosyltransferases (UGTs) are responsible for glycosylation by combining various small lipophilic molecules with sugars to produce water-soluble glycosides, which are crucial for the metabolism of plant secondary metabolites and detoxification in insects. This study presents a genome-wide analysis of the UGT gene family in the brown planthopper, Nilaparvata lugens, a destructive insect pest of rice in Asia. Based on the similarity to UGT homologs from other organisms, 20 putative NlUGT genes were identified in N.

View Article and Find Full Text PDF

The medicinal value of plants depends on minerals and nutrients and their complexation with chemotherapeutic compounds. The present study aimed to evaluate the phytochemical composition with anti-inflammatory and antidiarrheal potential of Heliotropium rariflorum. Among nutrients, fibers were maximum (25.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!