We have determined the susceptibility of T4 DNA (166 kilobase pairs, kbp) to fragmentation under steady shear in a cone-and-plate rheometer. After shearing for at least 30 min at a shear rate of , corresponding to a Reynolds number of and a Weissenberg number of , % of the sample is broken into a polydisperse mixture with a number-averaged molecular weight of kbp and a polydispersity index of , as measured by pulsed-field gel electrophoresis (with a 95% confidence interval). The molecular weight distributions observed here from a shear flow are similar to those produced by a (dominantly extensional) sink flow of DNA and are qualitatively different than the midpoint scission observed in simple extensional flow. Given the inability of shear flow to produce a sharp coil-stretch transition, the data presented here support a model where polymers can be fragmented in flow without complete extension. These results further indicate that DNA fragmentation by shear is unlikely to be a significant issue in microfluidic devices, and anomalous molecular weight observations in experiments are due to DNA processing prior to observation in the device.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616606 | PMC |
http://dx.doi.org/10.1063/5.0109361 | DOI Listing |
Arterioscler Thromb Vasc Biol
December 2024
Department of Pediatrics (T.S., J.-R.M., Y.H.C., J.M.S., J. Kaplan, A.C., L.W., D.G., S.T., S.I., M.D., W.Y., A.L.M., M.R.).
Background: Computational modeling indicated that pathological high shear stress (HSS; 100 dyn/cm) is generated in pulmonary arteries (PAs; 100-500 µm) in congenital heart defects causing PA hypertension (PAH) and in idiopathic PAH with occlusive vascular remodeling. Endothelial-to-mesenchymal transition (EndMT) is a feature of PAH. We hypothesize that HSS induces EndMT, contributing to the initiation and progression of PAH.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Industrial and Materials Science, Division of Engineering Materials, Chalmers University of Technology, Gothenburg, SE-412 96, Sweden.
Simultaneous rheological, polarized light imaging, and small-angle X-ray scattering experiments (Rheo-PLI-SAXS) are developed, thereby providing unprecedented level of insight into the multiscale orientation of hierarchical systems in simple shear. Notably, it is observed that mesoscale alignment in the flow direction does not develop simultaneously across nano-micro lengthscales in sheared suspensions of rod-like chiral-nematic (meso) phase forming cellulose nanocrystals. Rather, with increasing shear rate, orientation is observed first at mesoscale and then extends to the nanoscale, with influencing factors being the aggregation state of the hierarchy and concentration.
View Article and Find Full Text PDFFront Physiol
December 2024
Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, United States.
J Biomed Mater Res A
January 2025
Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue.
View Article and Find Full Text PDFComput Methods Programs Biomed
December 2024
College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, 325035, China.
Background And Objective: Deep vein thrombosis (DVT) of the lower limbs is a critical global vascular disease. Accurately assessing and predicting the efficacy of DVT treatment remains a significant challenge due to a lack of understanding of the mechanisms by which the level of patient-specific embolization and the rate of drug injection affect thrombolytic therapy.
Methods: In this study, we used the computed tomographic venography (CTV) clinical method to obtain patient-specific parameters, and the flow-solid interaction (FSI) method combined with biochemical response modeling of thrombolysis to analyze patient-specific hemodynamic and biomechanical characteristics and to quantitatively assess the effects of three vessel embolism levels (VEL) versus two drug injection rates (DIR) on bifurcated femoral venous thrombolytic therapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!