A series of perovskite solar cells with systematically varying surface area of the interface between n-type electron conducting layer (TiO) and perovskite are prepared by using an ordered array of straight, cylindrical nanopores generated by anodizing an aluminum layer evaporated onto a transparent conducting electrode. A series of samples with pore length varied from 100 to 500 nm are compared to each other and complemented by a classical planar cell and a mesoporous counterpart. All samples are characterized in terms of morphology, chemistry, optical properties, and performance. All samples absorb light to the same degree, and the increased interface area does not generate enhanced recombination. However, the short circuit current density increases monotonically with the specific surface area, indicating improved charge extraction efficiency. The importance of the slow interfacial rearrangement of ions associated with planar perovskite cells is shown to decrease in a systematic manner as the interfacial surface area increases. The results demonstrate that planar and mesoporous cells obey to the same physical principles and differ from each other quantitatively, not qualitatively. Additionally, the study shows that a significantly lower TiO surface area compared to mesoporous TiO is needed for an equal charge extraction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9597550 | PMC |
http://dx.doi.org/10.1021/acsaem.2c00870 | DOI Listing |
Int J Equity Health
January 2025
Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
Background: Predicting burn-related mortality is vital for family counseling, triage, and resource allocation. Several of the burn-specific mortality prediction scores have been developed, including the Abbreviated Burn Severity Index (ABSI) in 1982. However, these scores are not tested for accuracy to support contemporary estimates of the global burden of burn injury.
View Article and Find Full Text PDFAnn Biomed Eng
January 2025
Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, CCIT216, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
Purpose: Simulation studies, such as finite element (FE) modeling, offer insights into knee joint biomechanics, which may not be achieved through experimental methods without direct involvement of patients. While generic FE models have been used to predict tissue biomechanics, they overlook variations in population-specific geometry, loading, and material properties. In contrast, subject-specific models account for these factors, delivering enhanced predictive precision but requiring significant effort and time for development.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, 31151, Republic of Korea.
Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Faculty of Science, Islamic University of Madinah, Al-Jamia, Madinah, 42351, Saudi Arabia.
This study focuses on the synthesis of a novel Cerium-Magnesium (CeO-MgO) binary oxide nanomaterials by a simple co-precipitation process and used to remove harmful pollutants such as Cr(VI), Cu(II), and F. The morphology, phase, crystallite size, thermal stability, functional groups, surface area, and porosity of the synthesized nanomaterial were determined by using XRD, SEM, FTIR, TGA/DTA, and BET studies. The prepared nanomaterials showed adsorption selectivity of Cu(II) ≈ F> Cr(VI) with a high adsorption capacity of 84.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychotherapy and Psychosomatic Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
The Dermatology Life Quality Index (DLQI) should be used to assess treatment success in psoriasis (PSO). However, the DLQI does not assess the importance and achievement of treatment goals. The Patient Benefit Index (PBI) is a questionnaire that takes both into account.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!