Objectives: Tinnitus is defined as ringing of the ears that is experienced when there is no external sound source, and is an auditory phantom sensation. The insula as a multimodal cortex has been shown to be involved in the processing of auditory stimuli rather than other sensory and motor processing and reported to correlate with some aspects of tinnitus. However, its exact role is not clear. The present study aimed to investigate the effect of excitotoxic lesions limited to the insular cortex on the ability to detect a gap in background noise.

Materials And Methods: Gap detection test and prepulse inhibition, two objective measurements of auditory startle response, were measured, in 33 male Wistar rats, before and up to four weeks after insular lesion in three experimental groups (sham, control, and lesion).

Results: The ability to detect the gap interposed between 60 db background noise was impaired at weeks 2, 3, and 4 following insular lesion, while prepulse inhibition remained intact up to four weeks after surgery.

Conclusion: These findings indicated that excitotoxic lesions of the insular cortex may produce a tinnitus-like phenomenon in rats while sparing the hearing sensitivity; suggesting that the insular cortex may have a role in the development of tinnitus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9588320PMC
http://dx.doi.org/10.22038/IJBMS.2022.63698.14083DOI Listing

Publication Analysis

Top Keywords

insular cortex
16
excitotoxic lesions
8
ability detect
8
detect gap
8
prepulse inhibition
8
weeks insular
8
insular lesion
8
insular
6
cortex lesion
4
tinnitus
4

Similar Publications

The insular cortex (IC) processes various sensory information, including nociception, from the trigeminal region. Repetitive nociceptive inputs from the orofacial area induce plastic changes in the IC. Parvalbumin-immunopositive neurons (PVNs) project to excitatory neurons (pyramidal neurons [PNs]), whose inputs strongly suppress the activities of PNs.

View Article and Find Full Text PDF

Traditional decision-making models conceptualize humans as adaptive learners utilizing the differences between expected and actual rewards (prediction errors, PEs) to maximize outcomes, but rarely consider the influence of violations of emotional expectations (emotional PEs) and how it differs from reward PEs. Here, we conducted a fMRI experiment (n = 43) using a modified Ultimatum Game to examine how reward and emotional PEs affect punishment decisions in terms of rejecting unfair offers. Our results revealed that reward relative to emotional PEs exerted a stronger prediction to punishment decisions.

View Article and Find Full Text PDF

Morphine dependence or addiction is a serious global public health and social problem, and traditional treatments are very limited. Deep brain stimulation (DBS) has emerged as a new potential treatment for drug addiction. Repeated use of morphine leads to neuroadaptive and molecular changes in the addiction-related brain regions.

View Article and Find Full Text PDF

Neuropathic pain, caused by nerve damage, greatly affects quality of life. Recent research proposes modulating brain activity, particularly through electrical stimulation of the insular cortex (IC), as a treatment option. This study aimed to understand how IC stimulation (ICS) affects pain modulation.

View Article and Find Full Text PDF

Objective: Epilepsy is considered as a network disorder of interacting brain regions. The propagation of local epileptic activity from the seizure onset zone (SOZ) along neuronal networks determines the semiology of seizures. However, in highly interconnected brain regions such as the insula, the association between the SOZ and semiology is blurred necessitating invasive stereoelectroencephalography (SEEG).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!