[Research and application of photovoltaic cell online monitoring system for animal robot stimulator].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi

College of Electrical and Automation Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266510, P. R. China.

Published: October 2022

Power supply plays a key role in ensuring animal robots to obtain effective stimulation. To extending the stimulating time, there is a need to apply photovoltaic cells and monitor their parameter variations, which can help operators to obtain the optimal stimulation strategy. In this paper, an online monitoring system of photovoltaic cells for animal robot stimulators was presented. It was composed of battery information sampling circuit, multi-channel neural signal generator, power module and human-computer interaction interface. When the signal generator was working, remote navigation control of animal robot could be achieved, and the battery voltage, current, temperature and electricity information was collected through the battery information sampling circuit and displayed on the human-computer interaction system in real time. If there was any abnormal status, alarm would be activated. The battery parameters were obtained by charging and discharging test. The battery life under different light intensity and the stimulation effect of neural signal generator were tested. Results showed that the sampling errors of battery voltage, current and electric quantity were less than 15 mV, 5 mA and 6 mAh, respectively. Compared with the system without photovoltaic cells, the battery life was extended by 148% at the light intensity of 78 320 lx, solving the battery life problem to some extent. When animal robot was stimulated with this system, left and right turns could be controlled to complete with the success rate more than 80%. It will help researchers to optimize animal robot control strategies through the parameters obtained in this system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9927721PMC
http://dx.doi.org/10.7507/1001-5515.202109020DOI Listing

Publication Analysis

Top Keywords

animal robot
20
photovoltaic cells
12
signal generator
12
battery life
12
online monitoring
8
monitoring system
8
system photovoltaic
8
battery
8
battery sampling
8
sampling circuit
8

Similar Publications

Provision of supplemental concentrate in an automated milking system (AMS) is commonly used to encourage voluntary attendance, however, the motivation to voluntarily milk is highly variable between cows. The objectives of this study were to determine if dairy cow personality is associated with: 1) their short-term response to changes in factors believed to motivate voluntary AMS visits such as udder pressure and provision of supplemental feed (modulated by longer milking intervals or removal of AMS concentrate, respectively); and 2) their milking activity, production, and feeding behavior after returning to pre-treatment AMS milking interval and concentrate feed settings (i.e.

View Article and Find Full Text PDF

The body weight-based thrombolytic medication strategy in clinical trials shows critical defects in recanalization rate and post-thrombolysis hemorrhage. Methods for perceiving thrombi heterogeneity of thrombolysis resistance is urgently needed for precise thrombolysis. Here, we revealed the relationship between the thrombin heterogeneity and the thrombolysis resistance in thrombi and created an artificial biomarker-based nano-patrol system with robotic functional logic to perceive and report the thrombolysis resistance of thrombi.

View Article and Find Full Text PDF

Dynamic planning in hierarchical active inference.

Neural Netw

January 2025

Institute of Cognitive Sciences and Technologies, National Research Council, Padova, Italy. Electronic address:

By dynamic planning, we refer to the ability of the human brain to infer and impose motor trajectories related to cognitive decisions. A recent paradigm, active inference, brings fundamental insights into the adaptation of biological organisms, constantly striving to minimize prediction errors to restrict themselves to life-compatible states. Over the past years, many studies have shown how human and animal behaviors could be explained in terms of active inference - either as discrete decision-making or continuous motor control - inspiring innovative solutions in robotics and artificial intelligence.

View Article and Find Full Text PDF

An implantable system for opioid safety.

Device

October 2024

Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

Naloxone can effectively rescue victims from opioid overdose, but less than 5% survive due to delayed or absent first responder intervention. Current overdose reversal systems face key limitations, including low user adherence, false positive detection, and slow antidote delivery. Here, we describe a subcutaneously implanted robotic first responder to overcome these challenges.

View Article and Find Full Text PDF

Effect of Laminectomy Methods on the Surgical Safety of Automatic Laminectomy Robot.

Int J Med Robot

February 2025

Beijing Key Laboratory for Design and Evaluation Technology of Advanced Implantable & Interventional Medical Devices, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

Background: The efficacy of laminectomy procedures is contingent on the method of resection. The objective of this study was to investigate the impact of different methods of resection on the surgical safety of automated laminectomy robots, an area that remains uncharted.

Methods: Lamina resection surgeries using both drilling and layer-by-layer methods, are performed on ovine spinal samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!