The limitation of human dental pulp stem cells (DPSCs), which have potential application value in regenerative medicine, is that they are prone to age in vitro. Studies have shown adrenomedullin (ADM) is believed to promote the proliferation of human DPSCs, but whether it can also affect aging remains to be investigated. A lentivirus vector was used to construct human DPSCs overexpressing ADM. Senescence tests were carried out on cells of the 7th and 15th passage. Transcriptome analysis was conducted to analyze microRNA expression regulation changes after human DPSCs overexpressed ADM. HO induced the aging model of human DPSCs, and we examined the mechanism of recovery of aging through transfection experiments with miR-152 mimic, pCDH-CCNA2, and CCNA2 siRNA. Overexpression of ADM significantly upregulated the G2/M phase ratio of human DPSCs in natural passage culture (P = 0.001) and inhibited the expression of p53 (P = 0.014), P21 (P = 0.015), and P16 (P = 0.001). Decreased ROS accumulation was observed in human DPSCs during long-term natural passage (P = 0.022). Transcriptome analysis showed that miR-152 was significantly upregulated during human DPSC senescence (P = 0.001) and could induce cell senescence by directly targeting CCNA2. Transfection with miR-152 mimic significantly reversed the inhibitory effect of ADM overexpression on p53 (P = 0.006), P21 (P = 0.012), and P16 (P = 0.01) proteins in human DPSCs (HO-induced). In contrast, pCDH-CCNA2 weakened the effect of the miR-152 mimic, thus promoting cell proliferation and antiaging. ADM-overexpressing human DPSCs promote cell cycle progression and resist cellular senescence through CCNA2 expression promotion by inhibiting miR-152.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9928452 | PMC |
http://dx.doi.org/10.1080/15384101.2022.2135621 | DOI Listing |
Int J Mol Sci
December 2024
Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy.
Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 550000, China.
The aim of this study was to investigate the effect of dental pulp stem cell-derived exosomes (DPSCs-Exos) on the biological behaviour of fibroblasts, particularly on keloid fibroblasts (KFs) and normal skin fibroblasts (NFs), with a view to providing new insights into cellular regenerative medicine. We obtained DPSCs-Exos by ultracentrifugation and co-cultured it with KFs and NFs. We detected its effect on cell proliferation using the CCK-8 assay; cell migration ability by cell scratch and Transwell assays; extracellular matrix synthesis using the hydroxyproline content assay; the expression levels of genes associated with fibrosis by PCR assay; and the expression levels of proteins related to fibrosis in the cells using the Western Blot method.
View Article and Find Full Text PDFBiomedicines
November 2024
LBN, Montpellier University, 34193 Montpellier, France.
: CI-RM6P has different binding sites with affinities for both M6P and IGF2, plays a role in the regulation of the TGF-β and IGF pathways that is important for controlling cell growth and differentiation. We hypothesize that previously synthesised derivative of M6P could be an alternative candidate for bone tissue regeneration in terms of higher binding affinity, stability in human serum, low cost and temporal delivery. : CH-M6P is synthesised based on previously described protocol; mesenchymal origin of isolated DPSCs was assessed by flow cytometry and AR staining prior to alkaline phosphatase (ALP) activity test, qPCR to evaluate differentiation specific marker expression, immunofluoresence, and SEM/EDS to evaluate organic and inorganic matrix formation; and rat aortic ring model to evaluate angiogenic effect of molecule.
View Article and Find Full Text PDFJ Adv Res
January 2025
Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China. Electronic address:
Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
Stem Cells Int
December 2024
Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!