Lanthanide-doped upconversion nanoparticles (UCNPs) are rising as prospect nanomaterials for constructing polarization-sensitive narrowband near-infrared (NIR) photodetectors (PDs), which have attracted significant interest in astronomy, object identification, and remote sensing. However, polarized narrowband NIR photodetection and imaging based on UCNPs have yet to be realized. Herein, we demonstrate that NIR photodetection and imaging are capable of sensing polarized light as well as affording wavelength-selective detection at 1550 nm by integrating directional-Au@Ag nanorods (D-Au@Ag NRs) with NaYF:Er@NaYF UCNPs. Monolayer and large-area D-Au@Ag NRs polarization-sensitive plasmonic antenna films are obtained, and the center of their localized surface plasmon resonance (LSPR) peak is located at around 1550 nm. Experimental and theoretical results reveal that D-Au@Ag NRs have a sharp localized LSPR peak with a dominant scattering cross section. The UCNPs coupled with D-Au@Ag NRs exhibit significantly enhanced and strongly polarization-dependent luminescence with a high degree of polarization (DOP) of 0.72. The first polarization-resolved UC narrowband PD at 1550 nm is achieved, which delivers a DOP of 0.63, a detectivity of 1.69 × 10 Jones, and a responsivity of 0.32 A/W. Finally, we develop a polarized imaging system for 1550 nm with visual photoelectric detection based on the aforementioned PDs. Our work opens up possibilities for manipulating UC and developing next-generation polarization-sensitive narrowband infrared photodetection and imaging technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c14127 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Upconverting nanoparticles (UCNPs) convert near-infrared (IR) light into higher-energy visible light, allowing them to be used in applications such as biological imaging, nano-thermometry, and photodetection. It is well known that the upconversion luminescent efficiency of UCNPs can be enhanced by using a host material with low phonon energies, but the use of low-vibrational-energy inorganic ligands and non-epitaxial shells has been relatively underexplored. Here, we investigate the functionalization of lanthanide-doped NaYF UCNPs with low-vibrational-energy SnS ligands.
View Article and Find Full Text PDFACS Nano
January 2025
Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, Qinhuangdao 066004, China.
Moiré superlattices, created by stacking different van der Waals materials at twist angles, have emerged as a versatile platform for exploring intriguing phenomena such as topological properties, superconductivity, the quantum anomalous Hall effect, and the unconventional Stark effect. Additionally, the formation of moiré superlattice potential can generate spontaneous symmetry breaking, leading to an anisotropic optical response and electronic transport behavior. Herein, we propose a two-step chemical vapor deposition (CVD) strategy for synthesizing WS/SbS moiré superlattices.
View Article and Find Full Text PDFSmall
December 2024
School of Microelectronics, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi, 710072, P. R. China.
Adv Mater
December 2024
Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China.
Through the stacking technique of 2D materials, the interfacial polarization can be switched by an interlayer sliding, known as sliding ferroelectricity, which is advantageous in ultra-thin thickness, high switching speed, and high fatigue resistance. However, uncovering the relationship between the sliding path and the polarization state in rhombohedral-stacked materials remains a challenge, which is the key to 2D sliding ferroelectricity. Here, layer-dependent multidirectional sliding ferroelectricity in rhombohedral-stacked InSe (γ-InSe) is reported via dual-frequency resonance tracking piezoresponse force microscopy and conductive atomic force microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!