Tau, a soluble and predominantly neuronal protein, is best known for its microtubule (MT)-binding function in the cytosol, where it decisively contributes to stability as well as modulation of MT dynamics. In Alzheimer's disease and other tauopathies, Tau is altered into forming intracellular neurofibrillary tangles; additionally, also a mislocalization from the cytosol to the nucleus has been observed where interactions of Tau with the nucleus become possible. Using surface plasmon resonance (SPR), it was recently shown that Tau can directly interact with certain nucleoporins (e.g., Nup98), components of the nuclear pore complex (NPC). The NPC constitutes large regulated pores in the nuclear envelope that facilitate the bidirectional exchange of proteins, nucleic acids, and other biomolecules between the inner section of the nucleus and the cytosol, the nucleocytoplasmic transport. The mechanism of Tau/Nup interactions is as yet unknown, and a systematic interaction analysis of Tau with different Nups can be of high value to decipher the molecular binding mechanism of Tau to Nups. SPR is a useful tool to analyze binding affinities and kinetic parameters in a label-free environment. While one interaction partner is immobilized on a sensor chip, the second is supplied within a constant flow of buffer. Binding of mobile molecules to immobilized ones changes the refractive index of the medium close to the sensor surface with the signal being proportional to the bound mass. In this chapter, we describe the application of the SPR technique for the investigation of Tau binding to nucleoporins.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2597-2_8DOI Listing

Publication Analysis

Top Keywords

surface plasmon
8
plasmon resonance
8
tau nups
8
tau
7
analysis tau/nucleoporin
4
tau/nucleoporin interactions
4
interactions surface
4
resonance spectroscopy
4
spectroscopy tau
4
tau soluble
4

Similar Publications

Monolayers of transition-metal dichalcogenides, such as MoS, have attracted significant attention for their exceptional electronic and optical properties, positioning them as ideal candidates for advanced optoelectronic applications. Despite their strong excitonic effects, the atomic-scale thickness of these materials limits their light absorption efficiency, necessitating innovative strategies to enhance light-matter interactions. Plasmonic nanostructures offer a promising solution to overcome those challenges by amplifying the electromagnetic field and also introducing other mechanisms, such as hot electron injection.

View Article and Find Full Text PDF

This paper is devoted to the investigation of the plasmonic effect of metal nanoparticles (NPs) formed on the surface of the YAG: Bi, Ce, Yb phosphors in a temperature range between 4 and 300 K. Combination of a thin conversion layer with silver plasmonic nanostructures leads to increase of sensitizer absorption and emission efficiency. Enhancement of Bi luminescence in YAG epitaxial films with Ag NPs was observed upon cooling the samples below 200 K.

View Article and Find Full Text PDF

A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.

View Article and Find Full Text PDF

Ultrasensitive and high selectivity detection of fibrin using Y-shaped DNA-homing peptide doped probe on localized surface plasmon resonance platform.

Anal Chim Acta

January 2025

Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, China.

Background: Localized surface plasmon resonance (LSPR) sensor has drawn continuous attention to application of the detection of antibody, protein, virus, and bacteria. However, natural recognition molecules, such as antibody, which possess some properties, including low thermal stability, complicated operation and high price, uncontrollability of length and size and a tendency to accumulate easily on the surface of chip to reduce the sensitive of method. Furthermore, common blocking agents are not suitable for development of novel biosensors.

View Article and Find Full Text PDF

Magnetic optimizing surface-enhanced Raman scattering (SERS) strategy of detection and in-situ monitoring of photodegradation of Benzo[a]pyrene in water.

Anal Chim Acta

January 2025

The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Center of Biomimetic Catalysis and College of chemistry and materials science, School of Environmental and Geographical Sciences. Shanghai Normal University, Shanghai, 200234, People's Republic of China. Electronic address:

Background: Polycyclic aromatic hydrocarbons (PAHs) are one of the most dangerous persistent organic pollutants in the environment. Due to the discharge of chemical plants and domestic water, the existence of PAHs in sea water and lake water is harmful to human health. A method for rapid detection and removal of PAHs in water needs to be developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!