We employ time-resolved in situ atomic force microcopy to monitor the growth of individual Aβ40 fibrils and thereby directly measure the fibril growth rates. We describe procedures to express and purify the Aβ peptide and verify its identity, prepare solutions and seeds, quantify the displacements of the growing tips of individual fibrils, and determine their respective growth rates. We discuss approaches to evaluate and minimize the impact of the scanning tip on the monitored processes. We use the distribution of fibril thickness to characterize approximately the fibril structure. The ability to quantify faithfully the growth kinetics of amyloid fibrils empowers exploration of the molecular-level processes of fibril growth that relate to behaviors of amyloid species of laboratory and clinical interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2597-2_6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!