Dysfunction of mesangial cells plays a major role in the pathogenesis of diabetic kidney disease (DKD), the leading cause of kidney failure. However, the underlying molecular mechanisms are incompletely understood. By unbiased gene expression analysis of glucose-exposed mesangial cells, we identified the transmembrane receptor CD248 as the most upregulated gene, and the maladaptive unfolded protein response (UPR) as one of the most stimulated pathways. Upregulation of CD248 was further confirmed in glucose-stressed mesangial cells in vitro, in kidney glomeruli isolated from diabetic mice (streptozotocin; STZ and db/db models, representing type 1 and type 2 diabetes mellitus, respectively) in vivo, and in glomerular kidney sections from patients with DKD. Time course analysis revealed that glomerular CD248 induction precedes the onset of albuminuria, mesangial matrix expansion and maladaptive UPR activation (hallmarked by transcription factor C/EBP homologous protein (CHOP) induction) but is paralleled by loss of the adaptive UPR regulator spliced X box binding protein (XBP1). Mechanistically, CD248 promoted maladaptive UPR signaling via inhibition of the inositol requiring enzyme 1α (IRE1α)-mediated transcription factor XBP1 splicing in vivo and in vitro. CD248 induced a multiprotein complex comprising heat shock protein 90, BH3 interacting domain death agonist (BID) and IRE1α, in which BID impedes IRE1α-mediated XBP1 splicing and induced CHOP mediated maladaptive UPR signaling. While CD248 knockout ameliorated DKD-associated glomerular dysfunction and reverses maladaptive unfolded protein response signaling, concomitant XBP1 deficiency abolished the protective effect in diabetic CD248 knockout mice, supporting a functional interaction of CD248 and XBP1 in vivo. Hence, CD248 is a novel mesangial cell receptor inducing maladaptive UPR signaling in DKD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.kint.2022.09.024 | DOI Listing |
Front Mol Neurosci
December 2024
School of Basic Medical Science, Jining Key Laboratory of Pharmacology, Jining Medical University, Jining, Shandong, China.
Front Cell Dev Biol
December 2024
Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Human lungs consist of a distinctive array of cell types, which are subjected to persistent challenges from chemical, mechanical, biological, immunological, and xenobiotic stress throughout life. The disruption of endoplasmic reticulum (ER) homeostatic function, triggered by various factors, can induce ER stress. To overcome the elevated ER stress, an adaptive mechanism known as the unfolded protein response (UPR) is activated in cells.
View Article and Find Full Text PDFMetabolism
January 2025
Institute of Pharmacology and Toxicology, Technische Universität Dresden, Germany. Electronic address:
Endoplasmic reticulum (ER) is an essential organelle involved in vesicular transport, calcium handling, protein synthesis and folding, and lipid biosynthesis and metabolism. ER stress occurs when ER homeostasis is disrupted by the accumulation of unfolded and/or misfolded proteins in the ER lumen. Adaptive pathways of the unfolded protein response (UPR) are activated to maintain ER homeostasis.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
December 2024
CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China. Electronic address:
Diabetes is characterized by decreased beta-cell mass and islet dysfunction. The splicing factor SRSF2 plays a crucial role in cell survival, yet its impact on pancreatic beta cell survival and glucose homeostasis remains unclear. We observed that the deletion of Srsf2 specifically in beta cells led to time-dependent deterioration in glucose tolerance, impaired insulin secretion, decreased islet mass, an increased number of alpha cells, and the onset of diabetes by the age of 10 months in mice.
View Article and Find Full Text PDFFront Neurol
July 2024
Department of Biology, SDSU Electron Microscopy Facility, San Diego State University, San Diego, CA, United States.
Many neurodegenerative diseases (NDD) appear to share commonality of origin, chronic ER stress. The endoplasmic reticulum (ER) is a dynamic organelle, functioning as a major site of protein synthesis and protein posttranslational modifications, required for proper folding. ER stress can occur because of external stimuli, such as oxidative stress or neuroinflammatory cytokines, creating the ER luminal environment permissive for the accumulation of aggregated and misfolded proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!