Genomic Characterization of Prostatic Basal Cell Carcinoma.

Am J Pathol

Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington. Electronic address:

Published: January 2023

Basal cell carcinoma (BCC) of the prostate is a rare tumor. Compared with the more common acinar adenocarcinoma (AAC) of the prostate, BCCs show features of basal cell differentiation and are thought to be biologically distinct from AAC. The spectrum of molecular alterations of BCC has not been comprehensively described, and genomic studies are lacking. Herein, whole genome sequencing was performed on archival formalin-fixed, paraffin-embedded specimens of two cases with BCC. Prostatic BCCs were characterized by an overall low copy number and mutational burden. Recurrent copy number loss of chromosome 16 was observed. In addition, putative driver gene alterations in KIT, DENND3, PTPRU, MGA, and CYLD were identified. Mechanistically, depletion of the CYLD protein resulted in increased proliferation of prostatic basal cells in vitro. Collectively, these studies show that prostatic BCC displays distinct genomic alterations from AAC and highlight a potential role for loss of chromosome 16 in the pathogenesis of this rare tumor type.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9768679PMC
http://dx.doi.org/10.1016/j.ajpath.2022.09.010DOI Listing

Publication Analysis

Top Keywords

basal cell
12
prostatic basal
8
cell carcinoma
8
rare tumor
8
copy number
8
loss chromosome
8
genomic characterization
4
prostatic
4
characterization prostatic
4
basal
4

Similar Publications

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

The impact of islet neuronal nitric oxide synthase (nNOS) on glucose-stimulated insulin secretion (GSIS) is less understood. We investigated this issue by performing simultaneous measurements of the activity of nNOS versus inducible NOS (iNOS) in GSIS using isolated murine islets. Additionally, the significance of extracellular NO on GSIS was studied.

View Article and Find Full Text PDF

Background: Patients with haematologic malignancies are at increased risk of developing skin cancer and often experience worse skin cancer-related outcomes. However, there is a lack of nationwide, population-based data with long-term follow-up on the incidence and risks of different skin cancer types across all haematologic malignancies.

Objectives: To assess population-based risk estimates for cutaneous squamous cell carcinoma (CSCC), malignant melanoma (MM), Merkel cell carcinoma (MCC), and basal cell carcinoma (BCC) among patients with haematologic malignancies, stratified by skin cancer type and haematologic malignancy subgroup.

View Article and Find Full Text PDF

Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.

View Article and Find Full Text PDF

Ultrastructure expansion microscopy: Enlarging our perspective on apicomplexan cell division.

J Microsc

January 2025

Laboratory of Apicomplexan Biology, Institut Pasteur Montevideo, Montevideo, Uruguay.

Apicomplexans, a large phylum of protozoan intracellular parasites, well known for their ability to invade and proliferate within host cells, cause diseases with major health and economic impacts worldwide. These parasites are responsible for conditions such as malaria, cryptosporidiosis, and toxoplasmosis, which affect humans and other animals. Apicomplexans exhibit complex life cycles, marked by diverse modes of cell division, which are closely associated with their pathogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!