Environmental pollution caused by herbal residues, such as ginseng residue (GR), and the huge waste of medicinal ingredients in such residues hinder the development of the pharmaceutical industry. Few studies focused on the biotransformation of GRs and the practical utilization of their bioproducts. In this study, we developed a two-stage fermentation method to optimize GR bioconversion and used the fermented products as dietary supplements for piglets. The tested GR contained abundant lignocelluloses, protein, sugar, and amino acids. Approximately 43.10% of the total lignocelluloses were degraded into sugars by Inonotus obliquus in stage 1 of fermentation. Meanwhile, the sugar content increased by 36.20%, which became the feed for Bacillus subtilis and Saccharomyces cerevisiae in stage 2 of fermentation. These two strains boosted the production of bacterial proteins and other metabolites, including peptides, organic acids, and amino acids. At the end of fermentation, the contents of bioactive compounds significantly increased by 3.18%-21.79%. The dietary supplementation of fermented GR significantly improved the growth performance (6.47%-7.98%), intestinal microbiota, immune function, and healthy status and reduced the diarrhea incidence and noxious gas emission of the piglets. This study provides evidence-based results for the development and deployment of a circular economy between ginseng and livestock industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2022.10.020 | DOI Listing |
Polymers (Basel)
January 2025
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media.
View Article and Find Full Text PDFFoods
January 2025
College of Life Science and Technology, Xinjiang University, Urumqi 830000, China.
The substantial quantity of discarded tomato pomace (TP) results in the waste of valuable resources. This study utilizes these tomato by-products by mixing them with water in a specific proportion and fermenting the mixture in two stages: first with yeast, and then with lactic acid bacteria. The most suitable microbial strains for TP fermentation were identified by evaluating parameters such as peptide content, degree of hydrolysis, and gel electrophoresis analysis.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Bioscience and Bioengineering, Institute of Applied Microbiology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. Electronic address:
Front Surg
October 2024
Clinic for Orthopedic Surgery, Herzogin Elisabeth Hospital, Braunschweig, Germany.
Comput Struct Biotechnol J
December 2024
University of Vienna, Vienna, Austria.
2,3-Butanediol is a valuable raw material for many industries. Compared to its classical production from petroleum, novel fermentation-based manufacturing is an ecologically superior alternative. To be also economically feasible, the production bioprocesses need to be well optimized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!