Cell culture media metal content is critical in mammalian cell growth and monoclonal antibody productivity. The variability in metal concentrations has multiple sources of origin. As such, there is a need to analyze media before, during, and after production. Furthermore, it is not the simple presence of a given metal that can impact processes, but also their chemical form that is, speciation. To a first approximation, it is instructive to simply and quickly ascertain if the metals exist as inorganic (free metal) ions or are part of an organometallic complex (ligated). Here we present a simple workflow involving the capture of ligated metals on a fiber stationary phase with passage of the free ions to an inductively coupled plasma optical emission spectrometry for quantification; the captured species are subsequently eluted for quantification. This first level of speciation (free vs. ligated) can be informative towards sources of contaminant metal species and means to assess bioreactor processes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/btpr.3311DOI Listing

Publication Analysis

Top Keywords

cell culture
8
culture media
8
inductively coupled
8
coupled plasma
8
plasma optical
8
optical emission
8
emission spectrometry
8
metal
5
rapid metal
4
metal speciation
4

Similar Publications

FilmArray® Effectively Detects All Clades of F41 but Encounters Challenges with Other Adenovirus Species.

J Infect Chemother

January 2025

Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan. Electronic address:

The BioFire FilmArray® Gastrointestinal (GI) Panel, a widely used diagnostic tool, is designed to detect the genetic material of 22 common pathogens responsible for gastroenteritis, including viruses, bacteria, and parasites. It can detect human adenovirus (HAdV) species F, particularly serotypes F40 and F41, which are the major causes of diarrhea and mortality in children. However, its potential shortcomings in detecting other HAdV species limit its effectiveness in broader HAdV detection in clinical settings and outbreak investigations.

View Article and Find Full Text PDF

Establishing quality assurance for COVID-19 antigen tests in the Indo Pacific Region: A multi-site implementation study.

Diagn Microbiol Infect Dis

December 2024

Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia; Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Victoria, 3000, Australia.

Background: Quality assurance programs (QAPs) are used to evaluate the analytical quality of a diagnostic test and provide feedback to improve quality processes in testing. Rapid diagnostic tests were used in both laboratory and non-laboratory settings to diagnose COVID-19, although varied in reported performance. We aimed to design and implement a QAP for antigen rapid diagnostic tests (Ag-RDTs) for COVID-19 in Cambodia, Lao PDR, and Papua New Guinea.

View Article and Find Full Text PDF

Aflatoxin B1 impairs the growth and development of chicken PGCs through oxidative stress and mitochondrial dysfunction.

Ecotoxicol Environ Saf

January 2025

Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China; Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China. Electronic address:

Aflatoxins harm the reproductive system and gamete development in animals. Primordial germ cells (PGCs) in chickens, as ancestral cells of gametes, are essential for genetic transmission, yet the impact and mechanisms of aflatoxins on them remain elusive. This study systematically investigated the effects of aflatoxin B1 (AFB1) on chicken PGCs and their potential mechanisms using an in vitro culture model.

View Article and Find Full Text PDF

The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts.

Acta Biomater

January 2025

Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland. Electronic address:

Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue.

View Article and Find Full Text PDF

CD-44 targeted nanoparticles for combination therapy in an in vitro model of triple-negative breast cancer: Targeting the tumour inside out.

Colloids Surf B Biointerfaces

January 2025

Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!