Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The high-dimensional nature of proteomics data presents challenges for statistical analysis and biological interpretation. Multivariate analysis, combined with insightful visualization can help to reveal the underlying patterns in complex biological data. This chapter introduces the R package mixOmics which focuses on data exploration and integration. We first introduce methods for single data sets: both Principal Component Analysis, which can identify the patterns of variance present in data, and sparse Partial Least Squares Discriminant Analysis, which aims to identify variables that can classify samples into known groups. We then present integrative methods with Projection to Latent Structures and further extensions for discriminant analysis. We illustrate each technique on a breast cancer multi-omics study and provide the R code and data as online supplementary material for readers interested in reproducing these analyses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1967-4_15 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!