A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Statistical Analysis of Post-Translational Modifications Quantified by Label-Free Proteomics Across Multiple Biological Conditions with R: Illustration from SARS-CoV-2 Infected Cells. | LitMetric

Protein post-translational modifications (PTMs) are essential elements of cellular communication. Their variations in abundance can affect cellular pathways, leading to cellular disorders and diseases. A widely used method for revealing PTM-mediated regulatory networks is their label-free quantitation (LFQ) by high-resolution mass spectrometry. The raw data resulting from such experiments are generally interpreted using specific software, such as MaxQuant, MassChroQ, or Proline for instance. They provide data matrices containing quantified intensities for each modified peptide identified. Statistical analyses are then necessary (1) to ensure that the quantified data are of good enough quality and sufficiently reproducible, (2) to highlight the modified peptides that are differentially abundant between the biological conditions under study. The objective of this chapter is therefore to provide a complete data analysis pipeline for analyzing the quantified values of modified peptides in presence of two or more biological conditions using the R software. We illustrate our pipeline starting from MaxQuant outputs dealing with the analysis of A549-ACE2 cells infected by SARS-CoV-2 at different time stamps, freely available on PRIDE (PXD020019).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1967-4_12DOI Listing

Publication Analysis

Top Keywords

biological conditions
12
post-translational modifications
8
modified peptides
8
statistical analysis
4
analysis post-translational
4
quantified
4
modifications quantified
4
quantified label-free
4
label-free proteomics
4
proteomics multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!