Introduction: Amyotrophic lateral sclerosis (ALS) individuals carrying the hexanucleotide repeat expansion (HRE) in the C9orf72 gene (C9Pos) have been described as presenting distinct features compared to the general ALS population (C9Neg). We aim to identify the phenotypic traits more closely associated with the HRE and analyse the role of the repeat length as a modifier factor.

Methods: We studied a cohort of 960 ALS patients (101 familial and 859 sporadic cases). Motor phenotype was determined using the MRC scale, the lower motor neuron score (LMNS) and the Penn upper motor neuron score (PUMNS). Neuropsychological profile was studied using the Italian version of the Edinburgh Cognitive and Behavioral ALS Screen (ECAS), the Frontal Behavioral Inventory (FBI), the Beck Depression Inventory-II (BDI-II) and the State-Trait Anxiety Inventory (STAI). A two-step PCR protocol and Southern blotting were performed to determine the presence and the size of C9orf72 HRE, respectively.

Results: C9orf72 HRE was detected in 55/960 ALS patients. C9Pos patients showed a younger onset, higher odds of bulbar onset, increased burden of UMN signs, reduced survival and higher frequency of concurrent dementia. We found an inverse correlation between the HRE length and the performance at ECAS ALS-specific tasks (P = 0.031). Patients also showed higher burden of behavioural disinhibition (P = 1.6 × 10), lower degrees of depression (P = 0.015) and anxiety (P = 0.008) compared to C9Neg cases.

Conclusions: Our study provides an extensive characterization of motor, cognitive and behavioural features of C9orf72-related ALS, indicating that the C9orf72 HRE size may represent a modifier of the cognitive phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886586PMC
http://dx.doi.org/10.1007/s00415-022-11433-zDOI Listing

Publication Analysis

Top Keywords

c9orf72 hre
12
motor cognitive
8
cognitive behavioural
8
amyotrophic lateral
8
lateral sclerosis
8
als patients
8
motor neuron
8
neuron score
8
als
6
hre
6

Similar Publications

A GGGGCC hexanucleotide repeat expansion (HRE) within the C9orf72 gene is a major causative factor in amyotrophic lateral sclerosis (ALS). This aberrant HRE results in the generation of five distinct dipeptide repeat proteins (DPRs). Among the DPRs, poly-PR accumulates in the nucleus and exhibits particularly strong toxicity to motor and cortical neurons.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to identify biochemical markers in individuals at risk of developing ALS or FTD due to the C9orf72 hexanucleotide repeat expansion (HRE).
  • Researchers compared levels of specific cerebrospinal fluid biomarkers in 48 asymptomatic C9orf72 HRE carriers, 39 controls, and various patient groups, finding increased levels of ubiquitin carboxyl-hydrolase isozyme L1 in carriers versus controls.
  • These elevated levels suggest early biochemical changes in C9orf72 HRE carriers that might be linked to disease mechanisms, enhancing understanding of disease progression and prevention strategies.
View Article and Find Full Text PDF
Article Synopsis
  • The GGGGCC hexanucleotide repeat expansion in the C9orf72 gene is identified as a common cause of amyotrophic lateral sclerosis (ALS), leading to motor neuron degeneration and paralysis.
  • A zebrafish model expressing glycine-proline dipeptide repeats (GP DPR) reveals that both gain- and loss-of-function effects contribute to nerve cell damage and autophagy deficits, with poly(GP) levels similar to those found in ALS patient tissues.
  • Potential treatments involving autophagy activators like rapamycin or urolithin A show promise in alleviating motor deficits and offer new therapeutic options for ALS patients by addressing key disease mechanisms.
View Article and Find Full Text PDF

Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids.

Acta Neuropathol Commun

September 2024

Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls.

View Article and Find Full Text PDF
Article Synopsis
  • A hexanucleotide repeat expansion in a specific gene is a primary genetic cause of ALS and FTD, with proposed mechanisms including haploinsufficiency and dipeptide repeat proteins.
  • The study identifies effective disease-modifying siRNAs that can reduce the expression of harmful mRNA variants in a mouse model of ALS/FTD.
  • Results indicate that targeting all mRNA variants provides better results for reducing toxic RNA aggregates than focusing solely on HRE-containing mRNA, suggesting a promising RNA interference approach for therapy.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!