Host-related microbiota are critically important for the adaptation/acclimation of hosts to changing environments, but how environmental factors and host characteristics shape the microbial communities remains largely unknown. We investigated the effects of temperature on habitat-forming macroalgae and their associated bacterial communities. Three Sargassum species (S. horneri, S. fusiforme, and S. thunbergii) and seawater samples were sampled in Gouqi Island, China, and these macroalgal samples were incubated at different temperatures (10, 20, and 27°C) for 7 d. Bacterial communities were identified from the 16S rRNA gene V3-V4 regions. The algae-associated bacterial communities of the field samples were significantly different from seawater, implying host specificity. During laboratory incubation, decreased physiological status (photosynthetic rate and oxidative stress response) was detected for all the species at 10°C, especially with regard to S. horneri and S. fusiforme. For each host, associated bacterial communities at 20 and 27°C clustered closely, and these were separated from samples at 10°C based on constrained PCoA analyses. Permutational multivariate analysis of variance revealed that algae-associated bacterial communities were more affected by host species (23.3%) than by temperature (2.48%) during laboratory incubation. The changes in bacterial community composition may be influenced by algae metabolites, which should be tested in a future study. These results further contribute to our understanding of algal microbiome changes in response to environmental changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jpy.13293 | DOI Listing |
PLoS One
January 2025
Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America.
Urinary tract infections (UTIs) are among the most common bacterial infections of both dogs and humans, with most caused by uropathogenic Escherichia coli (UPEC). Recurrent UPEC infections are a major concern in the treatment and management of UTIs in both species. In humans, the ability of UPECs to form intracellular bacterial communities (IBCs) within urothelial cells has been implicated in recurrent UTIs.
View Article and Find Full Text PDFPLoS One
January 2025
IMU University Centre for Education, IMU University, Kuala Lumpur, Malaysia.
Introduction: Antimicrobial resistance (AMR) is a significant problem in developing, low- and middle-income countries like Nepal. Community engagement can be an important means to address the problem. Knowledge, attitude, practice, and adherence of women regarding antibiotics and AMR was studied.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in attackers shape resistance evolution in susceptible competitors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.
Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!