The aim of the present study was to explore L. seed mucilage as a natural polymer in controlled release floating drug delivery system. First, seed mucilage was extracted and evaluated for phytochemical screening, solubility studies, swelling index, viscosity and surface tension. Then, Atenolol floating systems were prepared with and without the L. seed mucilage by direct compression method. Phytochemical screening resulted from the presence of secondary metabolite carbohydrates, glycosides, flavonoids and phenolic compounds in good amounts. Results of hardness, friability, drug content and swelling index were satisfactory. The floating behaviour can increase the gastric residence time and eventually improve the bioavailability of the drug as evidence from buoyancy and dissolution studies. Interestingly, developed floating system showed remarkable increase in dissolution. Conclusively, the results suggest that developed Atenolol floating system with L. seed mucilage demonstrate interesting attributes to be explored for potential pharmaceutical application.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14786419.2022.2140154DOI Listing

Publication Analysis

Top Keywords

seed mucilage
20
floating drug
8
drug delivery
8
delivery system
8
system seed
8
phytochemical screening
8
atenolol floating
8
floating system
8
floating
6
mucilage
5

Similar Publications

Mucilicious methods: Navigating the tools developed to Arabidopsis Seed Coat Mucilage analysis.

Cell Surf

June 2025

Centro de Biotecnología Vegetal, Laboratorio Mucilab, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile.

During the last decades, Arabidopsis seed mucilage has been extensively studied to gain insight into the metabolism of pectin, hemicellulose and cellulose. This review aims to provide a comprehensive examination of the techniques used to understand the composition and structure of mucilage. Moreover, we present novel findings from mucilage analysis, including the separation of pectic domains within the mucilage, offering a fresh perspective on utilizing traditional techniques to analyze mucilage mutant lines.

View Article and Find Full Text PDF

The deterioration of meat products is significantly influenced by the oxidation of lipids. The addition of antioxidants is one of the accepted methods to retard lipid oxidation. The goal of this research was to encapsulate tomato powder with chia seed mucilage by lyophilization.

View Article and Find Full Text PDF

The current research focused on examining the effect of a coating made from Balangu seed mucilage (TSM-BM) and gelatin (Ge), with varying concentrations of dill essential oil (DEO) (0 %, 1 %, and 2 %) and zinc oxide nanoparticles (ZnO-np) (0 % and 0.5 %), on the quality characteristics of cherries stored at 4 °C over intervals of 0, 4, 7, 11, 18, and 25 days. The study noted that the application of this coating, particularly when combined with DEO and ZnO-np, significantly reduced the rate of changes in several parameters, including weight loss, firmness, titratable acidity, pH, total soluble solids, ascorbic acid, total anthocyanin content, total phenolic content, and antioxidant activity (p˂0.

View Article and Find Full Text PDF

Chia Oil Nanoemulsion Using Chia Mucilage as a Wall Material: An Alternative for Cracker Fat Substitution.

Plant Foods Hum Nutr

December 2024

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Subsede Sureste, Carretera Sierra Papacal-Chuburná Puerto - Parque Científico y Tecnológico de Yucatán. Tablaje Catastral 31264. Km 5.5, Mérida, México.

Crackers are bakery products that have shown an increase in consumption. One way to make crackers more nutritious is to add bioactive compounds, such as chia oil which is rich in polyunsaturated fatty acids. As these compounds are highly unsaturated, encapsulation techniques, such as nanoemulsion, allow the addition of them in foods, guaranteeing the preservation of their properties.

View Article and Find Full Text PDF

Background And Purpose: The study explores basil seed mucilage as a bioadhesive carrier for naproxen sodium, demonstrating its ability to enhance solubility when administered rectally. The mucilage, derived from seeds, showed bioadhesive properties and thermal stability, as confirmed by FTIR spectroscopy and X-ray diffraction analysis.

Experimental Approach: Microspheres were prepared using a double emulsion solvent evaporation technique, varying polymer ratios to optimize drug delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!