Background: Predicting invasiveness requires an understanding of the propensity of a given species to thrive in areas with novel ecological challenges. Evaluation of realized niche shift of an invasive species in its invasive range, detecting the main drivers of the realized niche shift, and predicting the potential distribution of the species can provide important information for the management of populations of invasive species and the conservation of biodiversity. The Australian redback spider, Latrodectus hasselti, is a widow spider that is native to Australia and established in Japan, New Zealand, and Southeast Asia. We used ecological niche models and ordinal comparisons in an integrative method to compare the realized niches of native and invasive populations of this spider species. We also assessed the impact of several climatic predictor variables and human activity on this niche shift. We hypothesized that human impact is important for successful establishment of this anthropophilic species, and that climatic predictor variables may determine suitable habitat and thus predict invasive ranges.

Results: Our models showed that L. hasselti distributions are positively influenced by human impact in both of the native and invasive ranges. Maximum temperature was the most important climatic variable in predictions of the distribution of native populations, while precipitation seasonality was the most important in predictions of invasive populations. The realized niche of L. hasselti in its invasive range differed from that in its native range, indicating possible realized niche shift.

Conclusions: We infer that a preference for human-disturbed environments may underlie invasion and establishment in this spider species, as anthropogenic habitat modifications could provide shelters from unsuitable climatic conditions and extreme climatic stresses to the spiders. Because Australia and the countries in which the species is invasive have differing climates, differences in the availability of certain climatic conditions could have played a role in the realized niche shift of L. hasselti.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9617396PMC
http://dx.doi.org/10.1186/s12983-022-00470-zDOI Listing

Publication Analysis

Top Keywords

realized niche
24
niche shift
20
invasive
10
shift invasive
8
widow spider
8
species
8
invasive species
8
species invasive
8
invasive range
8
native invasive
8

Similar Publications

Thanks to their unique physicochemical properties, ionic liquids (ILs) have moved from niche academic interest to critical components in various industrial applications. The textile industry, facing significant environmental and economic pressures, has begun to explore ILs as sustainable alternatives to traditional solvents and chemicals. This review summarizes research on the use of ILs in various textile processes, including dyeing, finishing, and fiber recycling, where their high thermal stability, tunable solubility, and low volatility are exploited to reduce resource consumption and environmental impact.

View Article and Find Full Text PDF

Parthenium weed ( L.) is one of the most noxious and fast-spreading invasive alien species, posing a major threat to ecosystems, agriculture, and public health worldwide. Mechanistic and correlative species distribution models are commonly employed to determine the potential habitat suitability of parthenium weed.

View Article and Find Full Text PDF

The spurdog (Squalus acanthias Linnaeus, 1758) is a globally distributed squaliform shark that has historically been overfished but is now recovering in the northeast Atlantic. Data series on spurdog movement and habitat use have been somewhat limited to research surveys due to challenges associated with electronic tagging. Here, we offer a revised attachment method for externally attached pop-up satellite archival tags that was successful in long-term deployments on pregnant females.

View Article and Find Full Text PDF

Now that it has been realized that viruses are ubiquitous, questions have been raised on factors influencing their diversity and distribution. For phytoviruses, understanding the interplay between plant diversity and virus species richness and prevalence remains cardinal. As both the amplification and the dilution of viral species richness due to increasing host diversity have been theorized and observed, a deeper understanding of how plants and viruses interact in natural environments is needed to explore how host availability conditions viral diversity and distributions.

View Article and Find Full Text PDF

[Intercropping history, pattern, and case analysis of Chinese medicinal material].

Zhongguo Zhong Yao Za Zhi

September 2024

School of Biological Science and Technology, University of Jinan Ji'nan 250022, China State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

Intercropping is a traditional and widely used planting pattern, and different intercropped plants have differences in spatial distribution and morphological structure compared with monoculture. Therefore, intercropping can realize efficient acquisition of limited space resources and efficient conversion of existing resources by utilizing the principle of niche complementarity of composite groups, weakening interspecific or intra-specific competition, and enhancing their complementary growth. Intercropping of Chinese medicinal material(CMM) has experienced the evolution of more than two thousand years from its founding to inheritance and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!