A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of Mouthguards on Skin Damage In Vitro Study. | LitMetric

Effects of Mouthguards on Skin Damage In Vitro Study.

Eur J Dent

Division of Special Needs Dentistry and Orofacial Pain, Department of Oral Health and Clinical Science Dentistry, Tokyo Dental College, Tokyo, Japan.

Published: July 2023

Objective:  Mouthguards can prevent and reduce orofacial sports traumas, which occur to the players themselves. However, the effect of mouthguards on skin damage has not been clarified. The present study's purpose was to examine whether the mouthguard can reduce or prevent skin damage caused by teeth (including the difference in mouthguard thickness).

Materials And Methods:  Pigskins, artificial teeth, and Ethylene-vinyl acetate (EVA) mouthguard blanks with 1.5- and 3.0-mm thickness were employed. Each of the two type mouthguards was produced in 10 replicates. Mouthguard incisal thickness and collision touch angle were measured on a PC using imaging software. A pendulum-type machine was used to apply impact. Strain gauges attached to the tooth and impacted plate were used to measure mouthguards' effect on impact stress. Also, a microscope was used to observe the after impacted skin condition, and the extent of damage was assessed as a score.

Results:  The pigskin was ruptured in without mouthguard (NOMG) with presenting the highest damage score, whereas the complete rupture was not seen in the 1.5 mm MG, but the damage of the skin (defeat) was observed. No tissue change was found with the 3 mmMG. In both the flat plate and impact tooth strain, no significant difference was observed between NOMG and 1.5 mmMG. However, 3 mmMG had a significantly smaller value than the other two conditions. These results are likely to be strongly influenced by the mouthguard incisal thicknesses and collision touch angles differences.

Conclusion:  The present study results clarified that two different thickness mouthguards reduced the skin damage, and the thicker mouthguard showed more effectiveness. Therefore, mouthguards may prevent the wearer's stomatognathic system's trauma and avoid damage to the skin of other athletes they are playing with. This effect seems to be an essential basis for explaining the necessity of using mouthguards for others besides full-contact sports.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569882PMC
http://dx.doi.org/10.1055/s-0042-1756474DOI Listing

Publication Analysis

Top Keywords

skin damage
16
mouthguards skin
8
damage
8
mouthguard incisal
8
collision touch
8
damage skin
8
skin
7
mouthguard
7
mouthguards
5
effects mouthguards
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!