Metabolite features of serum and intestinal microbiota response of largemouth bass (Micropterus salmoides) after Aeromonas hydrophila challenge.

Comp Biochem Physiol C Toxicol Pharmacol

Marine Science and Technology College, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China. Electronic address:

Published: January 2023

The enteric morphology, enteric microbiota structure and serum metabolomics of M. salmoides before and after infected by A. hydrophila were analysed to explore the pathogenic mechanism of A. hydrophila infection in M. salmoides. The results revealed that, after the infection of A. hydrophila, the villus boundary of largemouth bass became less obvious; the relative abundance of Proteobacteria and decreasing relative abundance of Tenericutes were increasing; genera relative abundance of putatively beneficial bacteria (Mycoplasma) were decreasing, whereas the genus Aeromonas increased after infection; serum metabolomic analysis showed that infection with A. hydrophila caused disorder to the metabolic processes of largemouth bass, particularly amino acid metabolism, and caused inflammation; several potential pathogen infection-related and significantly differential intestinal microbiota-related metabolite markers were identified, such as 6-hydroxy-5-methoxyindole glucuronide, zalcitabine, bilirubin, aciclovir. This study may provide new insights into the potential association between enteric microbiota and serum metabolism and the pathogenic mechanism of M. salmoides infected by A. hydrophila, providing a scientific basis for disease control in largemouth bass breeding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpc.2022.109496DOI Listing

Publication Analysis

Top Keywords

largemouth bass
16
relative abundance
12
enteric microbiota
8
salmoides infected
8
infected hydrophila
8
pathogenic mechanism
8
infection hydrophila
8
hydrophila
6
metabolite features
4
serum
4

Similar Publications

Bile acids (BAs), the primary components of bile, play significant roles in sugar, lipid, and cholesterol metabolism. Normal BA metabolism maintains a dynamic equilibrium by regulating gut microbiota to effectively protect the liver and intestines, thereby sustaining overall health. Conversely, abnormal BA metabolism can cause intestinal tissue and liver damage, disruption of enterohepatic circulation homeostasis, dysbiosis of gut microbiota, and gastrointestinal and hepatic diseases.

View Article and Find Full Text PDF

Understanding the impacts of environmental conditions at early life stages on phenotypes and physiological responses to thermal variability at later stages is crucial for elucidating adaptive strategies in fish species. This study investigated the lasting effects of embryonic temperature on the growth performance, transcriptomic profiles, and CpG methylation status of juvenile largemouth bass (Micropterus salmoides) under normal and heat stress (HS) conditions. Embryos were incubated at three temperatures (22 °C, 25 °C, and 28 °C), reared at a constant 25 °C for three months, and subjected to acute HS at 37 °C.

View Article and Find Full Text PDF

We provide a supplemental description of the type species for Cryptogonimus Osborn, 1903 (Digenea: Cryptogonimidae), Cryptogonimus chili Osborn, 1903, based on newly-collected, heat-killed, formalin-fixed specimens infecting rock bass, Ambloplites rupestris (Rafinesque), and smallmouth bass, Micropterus dolomieu Lacepède (both Centrarchiformes: Centrarchidae), from the Duck River, Tennessee (USA). We emend Cryptogonimus to include features observed in the present specimens of its type species and in the descriptions of its congeners: a broad (wider than long) oral sucker, an intestine that bifurcates in the posterior half of the forebody, a bipartite seminal vesicle, a hermaphroditic duct that is dorsal to the ventral sucker, a preovarian seminal receptacle, and a Laurer's canal that opens dorsally at the level of the anterior testis. We describe Caecincola duttonae sp.

View Article and Find Full Text PDF

Heavy metal pollution poses a significant threat to the growth and health of fish, causing substantial economic losses in aquaculture. This study investigates the toxic effects of Cr on the liver of Largemouth bass (Micropterus salmoides). Juvenile Largemouth bass were randomly divided into a control group (CON) and a chromium stress group (Cr), and subjected to a 96-h exposure test with Cr at 96-h LC concentration.

View Article and Find Full Text PDF

Dietary resistant starch supplementation improves the fish growth, lipid metabolism and intestinal barrier in largemouth bass (Micropterus salmoides) fed high-fat diets.

Int J Biol Macromol

February 2025

College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China. Electronic address:

Resistant starch (RS) is a novel type of prebiotic that exerts positive effects on lipid metabolism and intestinal flora. In this study, we investigated the effects of dietary RS on lipid metabolism and the intestinal barrier in largemouth bass (Micropterus salmoides). The experimental fish were fed either a control diet (C), a high-fat diet (H), or H diets supplemented with 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!