The Unruh effect can not only arise out of the entanglement between modes of left and right Rindler wedges, but also between modes of future and past light cones. We explore the geometric phase resulting from this timelike entanglement between the future and past, showing that it can be captured in a simple Λ system. This provides an alternative paradigm to the Unruh-deWitt detector. The Unruh effect has not been experimentally verified because the accelerations needed to excite a response from Unruh-deWitt detectors are prohibitively large. We demonstrate that a stationary but time-dependent Λ-system detects the timelike Unruh effect with current technology.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.129.160401DOI Listing

Publication Analysis

Top Keywords

entanglement future
8
future light
8
light cones
8
timelike unruh
8
berry phase
4
phase entanglement
4
cones detecting
4
detecting timelike
4
unruh
4
unruh unruh
4

Similar Publications

Optical binding refers to the light-induced interaction between two or more objects illuminated by laser fields. The high tunability of the strength, sign, and reciprocity of this interaction renders it highly attractive for controlling nanoscale mechanical motion. Here, we discuss the quantum theory of optical binding and identify unique signatures of this interaction in the quantum regime.

View Article and Find Full Text PDF

Exposure-response associations between fine particulate matter (PM2.5) and mortality have been extensively studied but potential confounding by daily minimum and maximum temperatures in the weeks preceding death has not been carefully investigated. This paper seeks to close that gap by using lagged partial dependence plots (PDPs), sorted by importance, to quantify how mortality risk depends on lagged values of PM2.

View Article and Find Full Text PDF

Quantum field lens coding algorithm (QF-LCA) dataset is useful for simulating systems and predict system events with high probability. This is achieved by computing QF lens distance-based variables associated to event probabilities from the dataset produced by field lenses that encode system states on a quantum level. The probability of a state transition (ST), doubles in prediction values at the decoding step, e.

View Article and Find Full Text PDF

Exploring the electronic states of molecules through excitation with entangled and classical photon pairs offers new insights into the nature of light-matter interactions and stimulates the development of quantum spectroscopy. Here, we address the importance of temporal entanglement of light in two-photon absorption (TPA) upon the S → S transition by the green fluorescent protein (GFP)─a key molecular unit in the bioimaging of living cells. By invoking a two-level model applicable when permanent dipole pathways dominate the two-photon transition, we derive a convenient closed-form analytical expression for the entangled TPA strength.

View Article and Find Full Text PDF

Multi-omic profiling highlights factors associated with resistance to immuno-chemotherapy in non-small-cell lung cancer.

Nat Genet

December 2024

Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.

Although immune checkpoint blockade (ICB) therapies have shifted the treatment paradigm for non-small-cell lung cancer (NSCLC), many patients remain resistant. Here we characterize the tumor cell states and spatial cellular compositions of the NSCLC tumor microenvironment (TME) by analyzing single-cell transcriptomes of 232,080 cells and spatially resolved transcriptomes of tumors from 19 patients before and after ICB-chemotherapy. We find that tumor cells and secreted phosphoprotein 1-positive macrophages interact with collagen type XI alpha 1 chain-positive cancer-associated fibroblasts to stimulate the deposition and entanglement of collagen fibers at tumor boundaries, obstructing T cell infiltration and leading to poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!