Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rib fractures are common traumatic injuries, with links to increased morbidity and mortality. Finite element ribs from human body models have struggled to predict the force-displacement response, force and displacement at fracture, and the fracture location for isolated rib tests. In the current study, the sensitivity of a human body model rib with updated anisotropic and asymmetric material models to changes in boundary conditions, material properties, and geometry was investigated systematically to quantify contributions to response. The updated material models using uncalibrated average material properties from literature improved the force-displacement response of the model, whereas the cross-sectional geometry was the only parameter to effect fracture location. The resulting uncalibrated model with improved material models and cross-sectional geometry closely predicted experimental average force-displacement response and fracture location.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2022.105527 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!