A comprehensive finite-element human ear model to estimate noise-induced hearing loss associated with occupational noise exposure.

Comput Methods Programs Biomed

Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University, Taichung 406040, Taiwan; The PhD Program for Medical Engineering and Rehabilitation Science, College of Biomedical Engineering, China Medical University, Taichung 406040, Taiwan. Electronic address:

Published: November 2022

Background And Objective: Noise is a common occupational and environmental hazard; however, little is known about the use of computational tools to quantitively analyze data on basilar membrane (BM) damage in noise-induced hearing loss (NIHL). Here, we established a comprehensive three-dimensional finite-element human ear model to quantify the impact of noise exposure on BM and perilymph fluid.

Methods: We used auditory risk units (ARUs) to evaluate the BM damage for subjects (3 men and 5 women; mean age, 32.75 ± 8.86 years; age range, 24-44 years). A 90-dB sound pressure level (SPL) was normally applied at the external auditory canal (EAC) entrance to simulate sound transmission from the EAC to the cochlea at frequencies of 0.2-10.0 kHz.

Results: The pressure distribution of perilymph fluid is totally different on frequency responses under low and high sound-evoked (0.013-10.0 kHz). The highest ARUs were 18.479% at the distance of 1 mm from the base, and the second-highest to fourth-highest ARUs occurred at distances of 5-7 mm from the base, where their ARUs were 9.749%, 9.176%, and 11.231%. The total of the ARUs reached 81.956% at external frequencies' sounds of 3.2-5.0 kHz. Among these, the 3.8-kHz and 3.6-kHz frequencies yielded the highest and second-highest ARUs of 20.325% and 19.873%, respectively.

Conclusions: This study would inform our understanding of NIHL associated with occupational noise exposure. We present a FE modelling and describe how it might provide a unique way to unravel mechanisms that drive NIHL due to loud noises.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2022.107179DOI Listing

Publication Analysis

Top Keywords

noise exposure
12
finite-element human
8
human ear
8
ear model
8
noise-induced hearing
8
hearing loss
8
associated occupational
8
occupational noise
8
arus
6
comprehensive finite-element
4

Similar Publications

Purpose Of Review: The exposome refers to the total environmental exposures a person encounters throughout life, and its relationship with human health is increasingly studied. This non-systematic review focuses on recent research investigating the effects of environmental factors-such as air pollution, noise, greenspace, neighborhood walkability, and metallic pollutants-on atherosclerosis, a major cause of cardiovascular disease.

Recent Findings: Studies show that long-term exposure to airborne particulate matter can impair endothelial function and elevate adhesion molecule levels, leading to vascular damage.

View Article and Find Full Text PDF

Exploiting biomimetic perception of invisible spectra in flexible artificial human vision systems (HVSs) is crucial for real-time dynamic information processing. Nevertheless, the fast processing of motion objects in natural environments poses a challenge, necessitating that these artificial HVSs simultaneously have swift photoresponse and nonvolatile memory. Here, inspired by the human retina, we propose a flexible UV neuromorphic visual synaptic device (NeuVSD) based on GaO@GaN-composited nanowires for dynamic visual perception.

View Article and Find Full Text PDF

Unlabelled: Stroke patients are rarely asked about their responses to specific design attributes. Virtual reality (VR) offers a promising tool to explore how hospital environments are experienced after stroke.

Purpose: To gather perspectives and emotional responses regarding physical design attributes of hospital patient rooms after stroke.

View Article and Find Full Text PDF

Noise-induced hearing loss is one of the most common forms of hearing loss in adults and also one of the most common occupational diseases. Extensive previous work has shown that the highly sensitive synapses of the inner hair cells (IHCs) may be the first target for irreparable damage and permanent loss in the noise-exposed cochlea, more precisely in the cochlear base. However, how such synaptic loss affects the synaptic physiology of the IHCs in this particularly vulnerable part of the cochlea has not yet been investigated.

View Article and Find Full Text PDF

Background: Occupational noise has been associated with numerous adverse health outcomes. However, limited evidence exists regarding its association with obesity. We aim to investigate the effect of occupational noise exposure on the risk of overweight/obesity among workers, providing scientific evidence for the prevention and management of overweight/obesity in the occupational population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!