To prolong the service life of flexible electronic materials, polymeric matrixes with excellent self-healing capability and integrated mechanical properties are highly desirable, but the balance between the self-healing capability and mechanical properties is a grand challenge. Here, polyrotaxanes as sliding crosslinkers and dynamic disulfide bonds are incorporated into the main chains of polyurethane (PU) via one-pot synthesis, which endows the PU with polydisperse hard/soft segments, high density of self-healing points and energy dissipation. Based on this judicious molecular design, the PU elastomers exhibit exceptional mechanical properties, such as high stretchability (1167 % with a tensile strength of 3.49 MPa), high fracture energy (20,775 J m) and high puncture energy (200.70 mJ). Moreover, due to the presence of dynamic reversible hydrogen and disulfide bonds, the elastomer could achieve stress and strain repair efficiencies of 93.98 % and 99.21 % at 100 ℃ within 1 h, respectively. The above-mentioned superiorities enable the bioinspired strain sensors to possess a large sensing range (∼596 %), high sensitivity (∼79.98), short response time (∼128 ms), along with excellent reliability and self-healing ability. Besides, the strain sensor exhibits remarkable recyclability and prominent reprocessability, which nicely solves the pollution by discarded electronics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.10.058DOI Listing

Publication Analysis

Top Keywords

disulfide bonds
12
self-healing capability
12
mechanical properties
12
strain sensors
8
sensing range
8
self-healing
5
high
5
biomimetic supramolecular
4
supramolecular polyurethane
4
polyurethane sliding
4

Similar Publications

Supramolecular transparent plastic engineering covalent-and-supramolecular polymerization.

Mater Horiz

January 2025

College of Chemistry and Chemical Engineering, Hunan University, Hunan 410082, P. R. China.

Supramolecular glass and plastic are a new generation of artificial transparent materials that exhibit excellent optical behavior and processability. However, owing to inherent deficiencies in their mechanical toughness and long-term stability, supramolecular materials lack the potential for functionalization and application. Inspired by the toughening phenomena in biological systems, a synergistic covalent-and-supramolecular polymerization strategy was applied to construct plastic-like supramolecular materials with high transmittance the solvent-free one-pot amidation of thioctic acid and (poly)amines.

View Article and Find Full Text PDF

Self-healing optically transparent polyimides have potential applications in optoelectronic device fabrication. In this study, for the first time, we successfully prepared a novel self-healing polyimide film containing reversible disulfide bonds through chemical imidization by introducing cystamine as a self-healing functional monomer into the molecular structure of conventional polyimides. The incorporation of cystamine enabled the films to maintain high transmittance (>87%) and tensile strength (>99 MPa).

View Article and Find Full Text PDF

Cytophaga is a genus of Gram-negative bacteria occurring in soil and the gut microbiome. It is closely related to pathogenic spp. that cause severe diseases in fish.

View Article and Find Full Text PDF

Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage.

View Article and Find Full Text PDF

MoS coatings are used extensively in aerospace and defense applications due to their ultralow friction and high wear resistance. Burnished and resin-bonded MoS coatings are commonly used in these applications due to simplicity in deposition and history of use, despite issues with consistency in coating properties and performance. Physical vapor deposition (PVD) of MoS thin films has emerged as a process alternative in the past 50 years, promising far greater control over film structure and composition but at a greater cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!