Single-molecule imaging is invaluable for investigating the heterogeneous behavior and interactions of biological molecules. However, an impediment to precise sampling of single molecules is the irreversible adsorption of components onto the surfaces of cover glasses. This causes continuous changes in the concentrations of different molecules dissolved or suspended in the aqueous phase from the moment a sample is dispensed, which will shift, over time, the position of chemical equilibria between monomeric and multimeric components. Interferometric scattering microscopy (iSCAT) is a technique in the single-molecule toolkit that has the capability to detect unlabeled proteins and protein complexes both as they adsorb onto and desorb from a glass surface. Here, we examine the reversible and irreversible interactions between a number of different proteins and glass analysis of the adsorption and desorption of protein at the single-molecule level. Furthermore, we present a method for surface passivation that virtually eliminates irreversible adsorption while still ensuring the residence time of molecules on surfaces is sufficient for detection of adsorption by iSCAT. By grafting high-density perfluoroalkane brushes on cover-glass surfaces, we observe approximately equal numbers of adsorption and desorption events for proteins at the measurement surface (±1%). The fluorous-aqueous interface also prevents the kinetic trapping of protein complexes and assists in establishing a thermodynamic equilibrium between monomeric and multimeric components. This surface passivation approach is valuable for single-molecule experiments using iSCAT microscopy because it allows for continuous monitoring of adsorption and desorption of protein without either a decline in detection events or a change in sample composition due to the irreversible binding of protein to surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650645PMC
http://dx.doi.org/10.1021/acsami.2c16647DOI Listing

Publication Analysis

Top Keywords

surface passivation
12
adsorption desorption
12
irreversible adsorption
8
monomeric multimeric
8
multimeric components
8
protein complexes
8
desorption protein
8
adsorption
6
surface
5
single-molecule
5

Similar Publications

Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.

View Article and Find Full Text PDF

Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to minimize non-radiative recombination and, to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance.

View Article and Find Full Text PDF

Non-Volatile Multifunctional Dipole Molecules Enable 19.2% Efficiency for Printable Mesoscopic Perovskite Solar Cells.

Small

January 2025

School of Materials Science and Engineering, School of Optoelectronic Engineering, Engineering Research Center of Electronic Information Materials and Devices, Ministry of Education, Guilin University of Electronic Technology, 1st Jinji Road, Guilin, 541004, P. R. China.

Dipole molecules (DMs) show great potential in defect passivation for printable mesoscopic perovskite solar cells (p-MPSCs), although the crystallization process of p-MPSCs is more intricate and challenging than planar perovskite solar cells. In this work, a series of non-volatile multifunctional DMs are employed as additives to enhance the crystallization of perovskites and improve both the power conversion efficiency (PCE) and stability of the devices. This enhancement is achieved by regulating the side groups of benzoic acid molecules with the electron-donating groups such as guanidine (─NH─C(═NH)─NH), amino (─NH) and formamidine (─C(═NH)─NH).

View Article and Find Full Text PDF

Carbon dot embedded hybrid microgel from synthesis to sensing: Experimental and theoretical approach.

Anal Chim Acta

February 2025

Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India; Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, Simhat, Haringhata, West Bengal, 741249, India. Electronic address:

Background: The intellectual progress in fabricating artificial probes for selective appraisal of biologically admissible amino acids has displayed exponential growth in recent era.The neoteric era in material science has witnessed the significant application of carbon quantum dots (CQDs). However, the hybrid microgel of CQDs was less explored.

View Article and Find Full Text PDF

Tailoring pyridine bridged chalcogen-concave molecules for defects passivation enables efficient and stable perovskite solar cells.

Nat Commun

January 2025

National Key Laboratory of Electronic Films and Integrated Devices, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, P. R. China.

Suppressing deep-level defects at the perovskite bulk and surface is indispensable for reducing the non-radiative recombination losses and improving efficiency and stability of perovskite solar cells (PSCs). In this study, two Lewis bases based on chalcogen-thiophene (n-Bu4S) and selenophene (n-Bu4Se) having tetra-pyridine as bridge are developed to passivate defects in perovskite film. The uncoordinated Pb and iodine vacancy defects can interact with chalcogen-concave group and pyridine group through the formation of the Lewis acid-base adduct, particularly both the defects can be surrounded by concave molecules, resulting in effective suppression charge recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!