Unlocking the in situ Li plating dynamics and evolution mediated by diverse metallic substrates in all-solid-state batteries.

Sci Adv

State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.

Published: October 2022

AI Article Synopsis

  • The study investigates how lithium (Li) deposits behave on different metallic substrates, which is crucial for the performance and safety of solid-state batteries.
  • Using advanced imaging techniques, researchers tracked Li plating on 10 metals, revealing differences in how Li nucleates and grows on each substrate.
  • Findings suggest that metals with good Li affinity and compatible lattice structures promote uniform Li plating, offering insights for enhancing solid-state battery designs and a valuable tool for future research.

Article Abstract

The mechanisms of Li deposition behaviors, which overwhelmingly affect battery performances and safety, are far to be understood in solid-state batteries. Here, using in situ micro-nano electrochemical scanning electron microscopy (SEM) manipulation platform, dynamic Li plating behaviors on 10 metallic substrates have been tracked, and the underlying mechanisms for dendrite-free Li plating are elucidated. Distinct Li deposition behaviors on Cu, Ti, Ni, Bi, Cr, In, Ag, Au, Pd, and Al are revealed quantitatively in nucleation densities, growth rates, and anisotropic ratios. For Li alloyable metals, the dynamic Li alloying process before Li growth is visually captured. It is concluded that a good affinity for Li and appropriate lattice compatibility between the substrate and Li are needed to facilitate homogeneous Li plating. Our work not only uncovers the Li plating dynamics, shedding light on the design of solid-state batteries, but also provides a powerful integrated SEM platform for future in-depth investigation of solid-state batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9616501PMC
http://dx.doi.org/10.1126/sciadv.add2000DOI Listing

Publication Analysis

Top Keywords

solid-state batteries
12
plating dynamics
8
metallic substrates
8
deposition behaviors
8
plating
5
unlocking situ
4
situ plating
4
dynamics evolution
4
evolution mediated
4
mediated diverse
4

Similar Publications

Beyond Polymerization: In Situ Coupled Fluorination Enables More Stable Interfaces for Solid-State Lithium Batteries.

J Am Chem Soc

January 2025

Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.

In situ polymerization strategies hold great promise for enhancing the physical interfacial stability in solid-state batteries, yet (electro)chemical degradation of polymerized interfaces, especially at high voltages, remains a critical challenge. Herein, we find interphase engineering is crucial for the polymerization process and polymer stability and pioneer an in situ polymerization-fluorination (Poly-FR) strategy to create durable interfaces with excellent physical and (electro)chemical stabilities, achieved by designing a bifunctional initiator for both polymerization and on-surface lithium donor reactions. The integrated in situ fluorination converts LiCO impurities on LiNiCoMnO (NCM811) surfaces into LiF-rich interphases, effectively inhibiting the aggressive (de)lithiation intermediates and protecting the interface from underlying chemical degradation, thereby surpassing the stability limitations of polymerization alone.

View Article and Find Full Text PDF

Gradient Design with Low-tortuosity Overcoming Kinetic Limitations in High-Loading Solid-State Cathodes.

Angew Chem Int Ed Engl

January 2025

UT Austin: The University of Texas at Austin, Materials Science and Engineering, 1 University Station C2200, 78712, Austin, UNITED STATES OF AMERICA.

The extensive commercialization of practical solid-state batteries (SSBs) necessitates the development of high-loading solid-state cathodes with fast charging capability. However, electrochemical kinetics are severely delayed in thick cathodes due to tortuous ion transport pathways and slow solid-solid ion diffusion, which limit the achievable capacity of SSBs at high current densities. In this work, we propose a conductivity gradient cathode with low-tortuosity to enable facile ion transport and counterbalance ion concentration gradient, thereby overcoming the kinetic limitations and achieving fast charging capabilities in thick cathodes.

View Article and Find Full Text PDF

Ion bridging enables high-voltage polyether electrolytes for quasi-solid-state batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.

Polyether electrolytes have been widely recognized for their favorable compatibility with lithium-metal, yet they are hampered by intrinsically low oxidation thresholds, limiting their potential for realizing high-energy Li-metal batteries. Here, we report a general approach involving the bridge joints between non-lithium metal ions and ethereal oxygen, which significantly enhances the oxidation stability of various polyether electrolyte systems. To demonstrate the feasibility of the ion-bridging strategy, a Zn ion-bridged polyether electrolyte (Zn-IBPE) with an extending electrochemical stability window of over 5 V is prepared, which enables good cyclability in 4.

View Article and Find Full Text PDF

Electric aircraft such as electric aircraft and electric vehicles play a key role in the future electric aviation industry, but they put forward huge requirements for battery energy density. However, the current high-energy-density lithium battery technology still needs to be broken through. Herein, through the molecular structure design of the polymer electrolyte, a strategy of a fast migration channel and wide electrochemical window is proposed to fabricate high-voltage-resistant solid polymer electrolyte (HVPE) via in situ polymerization.

View Article and Find Full Text PDF

A polyvinylidene carbonate:BN layer was constructed between LiAlTi(PO) (LATP) and the lithium (Li) electrode, improving interfacial compatibility and thermal stability. The LiN-rich solid electrolyte interphase regulates Li deposition behaviors. The solid-state Li metal batteries (SSLMBs) show remarkable electrochemical performance, exhibiting endurance for 800 hours of cycling at 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!