Background: Ultra-deep sequencing to detect low-frequency mutations in circulating tumor-derived DNA (ctDNA) increases the diagnostic value of liquid biopsy. The demand for large ctDNA panels for comprehensive genomic profiling and tumor mutational burden (TMB) estimation is increasing; however, few ctDNA panels for TMB have been validated. Here, we designed a ctDNA panel with 531 genes, named TMB500, along with a technical and clinical validation.

Methods: Synthetic reference cell-free DNA materials with predefined allele frequencies were sequenced in a total of 92 tests in 6 batches to evaluate the precision, linearity, and limit of detection of the assay. We used clinical samples from 50 patients with various cancers, 11 healthy individuals, and paired tissue samples. Molecular barcoding and data analysis were performed using customized pipelines.

Results: The assay showed high precision and linearity (coefficient of determination, r2 =0.87) for all single nucleotide variants, with a limit of detection of 0.24%. In clinical samples, the TMB500 ctDNA assay detected most variants present and absent in tissues, showing that ctDNA could assess tumor heterogeneity in different tissues and metastasis sites. The estimated TMBs correlated well between tissue and blood, except in 4 cases with extreme heterogeneity that showed very high blood TMBs compared to tissue TMBs. A pilot evaluation showed that the TMB500 assay could be used for disease monitoring.

Conclusions: The TMB500 assay is an accurate and reliable ctDNA assay for many clinical purposes. It may be useful for guiding the treatment of cancers with diverse genomic profiles, estimating TMB in immune therapy, and disease monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1093/clinchem/hvac146DOI Listing

Publication Analysis

Top Keywords

tumor mutational
8
mutational burden
8
ctdna panels
8
precision linearity
8
limit detection
8
assay clinical
8
clinical samples
8
ctdna assay
8
tmb500 assay
8
assay
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!