An extension of the generalized energy-conserving dissipative particle dynamics method (GenDPDE) that allows mass transfer between mesoparticles via a diffusion process is presented. By considering the concept of the mesoparticles as , the complexity and flexibility of the GenDPDE framework were enhanced to allow for interparticle mass transfer under isoenergetic conditions, notated here as GenDPDE-M. In the formulation, diffusion is described via the theory of mesoscale irreversible processes based on linear relationships between the fluxes and thermodynamic forces, where their fluctuations are described by Langevin-like equations. The mass exchange between mesoparticles is such that the mass of the mesoparticle remains unchanged after the transfer process and requires additional considerations regarding the coupling with other system properties such as the particle internal energy. The proof-of-concept work presented in this article is the first part of a two-part article series. In Part 1, the development of the GenDPDE-M theoretical framework and the derivation of the algorithm are presented in detail. Part 2 of this article series is targeted for practitioners, where applications, demonstrations, and practical considerations for implementing the GenDPDE-M method are presented and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.2c00452 | DOI Listing |
Phys Rev Lett
December 2024
Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, New York 10003, USA.
We show that the Veneziano amplitude of string theory is the unique solution to an analytically solvable bootstrap problem. Uniqueness follows from two assumptions: faster than power-law falloff in high-energy scattering and the existence of some infinite sequence in momentum transfer at which higher-spin exchanges cancel. The string amplitude-including the mass spectrum-is an output of this bootstrap.
View Article and Find Full Text PDFAnal Chem
January 2025
Separation Science Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4bis, B-9000 Ghent, Belgium.
Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Mechanical Engineering & Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902, United States.
In contrast to the traditional perspective that thermal fluctuations are insignificant in surface dynamics, here we report their influence on surface reaction dynamics. Using real-time low-energy electron microscopy imaging of NiAl(100) under both vacuum and O atmospheres, we demonstrate that transient temperature variations substantially alter the direction of atom diffusion between the surface and bulk, leading to markedly different oxidation outcomes. During heating, substantial outward diffusion of atoms from the bulk to the surface results in step growth.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Mayo Clinic Florida, Jacksonville, FL, USA.
Background: We previously identified the novel mechanism of pathological tau transfer via extracellular vesicles (EVs) in Alzheimer's disease (AD). Targeting EV secretion to mitigate tau transfer is therefore a promising therapeutic approach for AD. P2X purinoreceptor 7 (P2RX7), an ATP-gated cationic channel, regulates microvesicle shedding or secretion of multivesicular body-derived exosomes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Carbon-supported Pt-based catalysts are the most effective catalysts for direct methanol fuel cells (DMFCs). However, challenges such as high Pt loading, cost, and susceptibility to CO poisoning severely hinder the development of DMFCs. In this paper, CoFeO@polymer@ZIF-67 is prepared successfully through sequential solution polymerization and in situ growth with modified CoFeO as the core.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!