Prediction of leptospirosis outbreaks by hydroclimatic covariates: a comparative study of statistical models.

Int J Biometeorol

Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.

Published: December 2022

Leptospirosis, the infectious disease caused by a spirochete bacteria, is a major public health problem worldwide. In Argentina, some regions have climatic and geographical characteristics that favor the habitat of bacteria of the Leptospira genus, whose survival strongly depends on climatic factors, enhanced by climate change, which increase the problems associated with people's health. In order to have a method to predict leptospirosis cases, in this paper, five time series forecasting methods are compared: two parametric (autoregressive integrated moving average and an alternative one that allows covariates, ARIMA and ARIMAX, respectively), two nonparametric (Nadaraya-Watson Kernel estimator, one and two kernels versions, NW-1 K and NW-2 K), and one semiparametric (semi-functional partial linear regression, SFPLR) method. For this, the number of cases of leptospirosis registered from 2009 to 2020 in three important cities of northeastern Argentina is used, as well as hydroclimatic covariates related to the presence of cases. According to the obtained results, there is no method that improves considerably the rest and can be recommended as a unique tool for leptospirosis prediction. However, in general, the NW-2 K method gets a better performance. This work, in addition to using a long-term high-quality time series, enriches the area of applications of statistical models to epidemiological leptospirosis data by the incorporation of hydroclimatic variables, and it is recommended directing further efforts in this line of research, under the context of current climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9614762PMC
http://dx.doi.org/10.1007/s00484-022-02378-zDOI Listing

Publication Analysis

Top Keywords

hydroclimatic covariates
8
statistical models
8
climate change
8
time series
8
leptospirosis
5
prediction leptospirosis
4
leptospirosis outbreaks
4
outbreaks hydroclimatic
4
covariates comparative
4
comparative study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!