One Digital Health Intervention for Monitoring Human and Animal Welfare in Smart Cities: Viewpoint and Use Case.

JMIR Med Inform

Working Group "One Digital Health", European Federation for Medical Informatics (EFMI), Le Mont-sur-Lausanne, Switzerland.

Published: May 2023

Smart cities and digital public health are closely related. Managing digital transformation in urbanization and living spaces is challenging. It is critical to prioritize the emotional and physical health and well-being of humans and their animals in the dynamic and ever-changing environment they share. Human-animal bonds are continuous as they live together or share urban spaces and have a mutual impact on each other's health as well as the surrounding environment. In addition, sensors embedded in the Internet of Things are everywhere in smart cities. They monitor events and provide appropriate responses. In this regard, accident and emergency informatics (A&EI) offers tools to identify and manage overtime hazards and disruptive events. Such manifold focuses fit with One Digital Health (ODH), which aims to transform health ecosystems with digital technology by proposing a comprehensive framework to manage data and support health-oriented policies. We showed and discussed how, by developing the concept of ODH intervention, the ODH framework can support the comprehensive monitoring and analysis of daily life events of humans and animals in technologically integrated environments such as smart homes and smart cities. We developed an ODH intervention use case in which A&EI mechanisms run in the background. The ODH framework structures the related data collection and analysis to enhance the understanding of human, animal, and environment interactions and associated outcomes. The use case looks at the daily journey of Tracy, a healthy woman aged 27 years, and her dog Mego. Using medical Internet of Things, their activities are continuously monitored and analyzed to prevent or manage any kind of health-related abnormality. We reported and commented on an ODH intervention as an example of a real-life ODH implementation. We gave the reader examples of a "how-to" analysis of Tracy and Mego's daily life activities as part of a timely implementation of the ODH framework. For each activity, relationships to the ODH dimensions were scored, and relevant technical fields were evaluated in light of the Findable, Accessible, Interoperable, and Reusable principles. This "how-to" can be used as a template for further analyses. An ODH intervention is based on Findable, Accessible, Interoperable, and Reusable data and real-time processing for global health monitoring, emergency management, and research. The data should be collected and analyzed continuously in a spatial-temporal domain to detect changes in behavior, trends, and emergencies. The information periodically gathered should serve human, animal, and environmental health interventions by providing professionals and caregivers with inputs and "how-to's" to improve health, welfare, and risk prevention at the individual and population levels. Thus, ODH complementarily combined with A&EI is meant to enhance policies and systems and modernize emergency management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238965PMC
http://dx.doi.org/10.2196/43871DOI Listing

Publication Analysis

Top Keywords

smart cities
16
odh intervention
16
human animal
12
odh framework
12
odh
11
digital health
8
health
8
humans animals
8
internet things
8
daily life
8

Similar Publications

We conducted a genome-wide association study on income among individuals of European descent (N = 668,288) to investigate the relationship between socio-economic status and health disparities. We identified 162 genomic loci associated with a common genetic factor underlying various income measures, all with small effect sizes (the Income Factor). Our polygenic index captures 1-5% of income variance, with only one fourth due to direct genetic effects.

View Article and Find Full Text PDF

Smart cities deploy various sensors such as microphones and RGB cameras to collect data to improve the safety and comfort of the citizens. As data annotation is expensive, self-supervised methods such as contrastive learning are used to learn audio-visual representations for downstream tasks. Focusing on surveillance data, we investigate two common limitations of audio-visual contrastive learning: false negatives and the minimal sufficient information bottleneck.

View Article and Find Full Text PDF

Smart village concept in Indonesia: ICT as determining factor.

Heliyon

January 2025

Department of Development Geography, Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.

Village development in Indonesia has become the national development agenda prioritized in conjunction with the enactment of the Village Law in 2014. Village development through smart village is considered relevant to the current era's progress and rapid technological advancements. Smart village is often defined as the concept of village development based on the utilization of information and communication technology (ICT).

View Article and Find Full Text PDF

Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly for applications involving weak signals obscured by noise. Advances in signal processing algorithms and hardware synthesis have enabled accurate signal extraction, even in extremely noisy environments, making LIAs indispensable in sensor applications for healthcare, industry, and other services. For instance, the electrical impedance measurement of the human body, organs, tissues, and cells, known as bioelectrical impedance, is commonly used in biomedical and healthcare applications because it is non-invasive and relatively inexpensive.

View Article and Find Full Text PDF

A Dual-Channel and Frequency-Aware Approach for Lightweight Video Instance Segmentation.

Sensors (Basel)

January 2025

The Higher Educational Key Laboratory for Measuring & Control Technology and Instrumentation of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China.

Video instance segmentation, a key technology for intelligent sensing in visual perception, plays a key role in automated surveillance, robotics, and smart cities. These scenarios rely on real-time and efficient target-tracking capabilities for accurate perception and intelligent analysis of dynamic environments. However, traditional video instance segmentation methods face complex models, high computational overheads, and slow segmentation speeds in time-series feature extraction, especially in resource-constrained environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!