The polarity of mouse hair follicles is controlled by the Frizzled (Fzd) receptors and other membrane planar cell polarity (PCP) proteins. Whether Wnt proteins can act as PCP ligands in the skin remains unknown. Here, we show that overexpression of Wnt5a in the posterior part of mouse embryos causes a local disruption of hair follicle orientation. The misoriented hair follicle phenotype in Wnt5a overexpressing mice can be rescued by a heterozygous loss of Fzd6, suggesting Wnt5a is likely to signal through Fzd6. Although the membrane distribution of PCP proteins seems unaffected by Wnt5a overexpression, transcriptional profiling analyses identify a set of genes as potential targets of the skin polarization program controlled by Wnt5a/Fzd6 signaling. Surprisingly, deletion of Wnt5a globally or in the posterior part of the mouse embryos does not affect hair follicle orientation. We show that many other Wnts are highly expressed in the developing skin. They can activate the Fzd6 signaling pathway in vitro and may act together with Wnt5a to regulate the Fzd6-mediated skin polarization. Our experiments demonstrate for the first time that Wnt5a can function as an orienting cue for mouse skin PCP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9845745PMC
http://dx.doi.org/10.1242/dev.200816DOI Listing

Publication Analysis

Top Keywords

hair follicle
16
polarity mouse
8
mouse skin
8
pcp proteins
8
posterior mouse
8
mouse embryos
8
follicle orientation
8
skin polarization
8
wnt5a
7
skin
6

Similar Publications

Objective: To assess the clinical efficacy of combining autologous fat grafting with hair follicle unit transplantation.

Methods: The authors conducted a retrospective analysis involving 30 patients at the Department of Plastic Surgery, Second Affiliated Hospital of Nanchang University, between January 2021 and January 2023. Granular fat was harvested from the thigh's posterior aspect using liposuction.

View Article and Find Full Text PDF

Stem cell therapy for bladder regeneration: A comprehensive systematic review.

Regen Ther

March 2025

Pediatric Urology and Regenerative Medicine Research Center, Gene Cell and Tissue Research Institute Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

Tissue engineering has been considered a potential choice for urinary system reconstruction. Here, we aim to a broad spectrum of employed stem cells in bladder regeneration by performing a comprehensive systematic review. In January 2024, we searched Scopus, PubMed, and Embase databases for studies that tried bladder regeneration by tissue engineering using stem cells.

View Article and Find Full Text PDF

Human Hair Follicle Mesenchymal Stem Cell-Derived Exosomes Attenuate UVB-Induced Photoaging via the miR-125b-5p/TGF-β1/Smad Axis.

Biomater Res

January 2025

Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.

Cutaneous photoaging, induced by chronic exposure to ultraviolet (UV) radiation, typically manifests as alterations in both the physical appearance and functional properties of the skin and may predispose individuals to cancer development. Recent studies have demonstrated the reparative potential of exosomes derived from mesenchymal stem cells in addressing skin damage, while specific reports highlight their efficacy in ameliorating skin photoaging. However, the precise role of exosomes derived from human hair follicle mesenchymal stem cells (HFMSC-Exos) in the context of cutaneous photoaging remains largely unexplored.

View Article and Find Full Text PDF

Natural phenylethanoid glycoside forsythoside A alleviates androgenetic alopecia by selectively inhibiting TRPV3 channels in mice.

Eur J Pharmacol

January 2025

Department of Pharmacology, School of Pharmacy, Qingdao Medical College of Qingdao University, Qingdao, China; Institute of Innovative Drugs, Qingdao University, Qingdao, China.

Dihydrotestosterone (DHT), an androgen derivate, is known to be a key factor involved in androgenetic alopecia. DHT suppresses the growth of outer root sheath cells and induces apoptosis of hair keratinocytes, thereby causing hair follicle miniaturization and hair regrowth inhibition. Forsythoside A, a natural substance derived from Forsythia suspensa, has been shown to reduce DHT-induced apoptosis in human hair cells and suppress hair regrowth inhibition induced by DHT in mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!