Nuclear movement in multinucleated cells.

Development

Biology Department, Boston College, Chestnut Hill, MA 02467, USA.

Published: November 2022

Nuclear movement is crucial for the development of many cell types and organisms. Nuclear movement is highly conserved, indicating its necessity for cellular function and development. In addition to mononucleated cells, there are several examples of cells in which multiple nuclei exist within a shared cytoplasm. These multinucleated cells and syncytia have important functions for development and homeostasis. Here, we review a subset of the developmental contexts in which the regulation of the movement and positioning of multiple nuclei are well understood, including pronuclear migration, the Drosophila syncytial blastoderm, the Caenorhabditis elegans hypodermis, skeletal muscle and filamentous fungi. We apply the principles learned from these models to other systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655921PMC
http://dx.doi.org/10.1242/dev.200749DOI Listing

Publication Analysis

Top Keywords

nuclear movement
12
multinucleated cells
8
multiple nuclei
8
movement multinucleated
4
cells
4
cells nuclear
4
movement crucial
4
crucial development
4
development cell
4
cell types
4

Similar Publications

Objectives: KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein involved in several cellular processes, including nuclear splicing, mRNA localization, and cytoplasmic degradation. While KHSRP's role has been studied in other cancers, its specific involvement in gastric cancer remains poorly understood. This study aims to explore KHSRP expression in gastric cancer and its potential effects on tumor progression and immune response.

View Article and Find Full Text PDF

Asymptomatic female softball pitchers have altered hip morphology and cartilage composition.

Sci Rep

January 2025

La Trobe Sport & Exercise Medicine Research Centre, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC, Australia.

Few studies have explored hip morphology and cartilage composition in female athletes or the impact of asymmetric repetitive loading, such as occurs during softball pitching. The current cross-sectional study assessed bilateral bony hip morphology on computed tomography imaging in collegiate-level softball pitchers ('Pitch1', n = 25) and cross-country runners ('Run', n = 13). Magnetic resonance imaging was used to assess cartilage relaxation times in a second cohort of pitchers ('Pitch2', n = 10) and non-athletic controls ('Con', n = 4).

View Article and Find Full Text PDF

Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.

Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.

Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!