Diabetic retinopathy (DR) is a common microvascular complication in patients with diabetes mellitus. DR is caused by chronic hyperglycemia and is characterized by progressive loss of vision because of damage to the retinal microvasculature. In this study, we investigated the regulatory role and clinical significance of the vascular endothelial growth factor (VEGF)/protein kinase C (PKC)/endothelin (ET)/nuclear factor-κB (NF-κB)/intercellular adhesion molecule 1 (ICAM-1) signaling pathway in DR using a rat model. Intraperitoneal injections of the VEGF agonist, streptozotocin (STZ) were used to generate the DR model rats. DR rats treated with the VEGF inhibitor (DR+VEGF inhibitor) were used to study the specific effects of VEGF on DR pathology and the underlying mechanisms. DR and DR+VEGF agonist rats were injected with the PKCβ2 inhibitor, GF109203X to determine the therapeutic potential of blocking the VEGF/PKC/ET/NF-κB/ICAM-1 signaling pathway. The body weights and blood glucose levels of the rats in all groups were evaluated at 16 weeks. DR-related retinal histopathology was analyzed by hematoxylin and eosin staining. ELISA assay was used to estimate the PKC activity in the retinal tissues. Western blotting and RT-qPCR assays were used to analyze the expression levels of PKC-β2, VEGF, ETs, NF-κB, and ICAM-1 in the retinal tissues. Immunohistochemistry was used to analyze VEGF and ICAM-1 expression in the rat retinal tissues. Our results showed that VEGF, ICAM-1, PKCβ2, ET, and NF-κB expression levels as well as PKC activity were significantly increased in the retinal tissues of the DR and DR+VEGF agonist rat groups compared to the control and DR+VEGF inhibitor rat groups. DR and DR+VEGF agonist rats showed significantly lower body weight and significantly higher retinal histopathology scores and blood glucose levels compared to the control and DR+VEGF inhibitor group rats. However, treatment of DR and DR+VEGF agonist rats with GF109203X partially alleviated DR pathology by inhibiting the VEGF/ PKC/ET/NF-κB/ICAM-1 signaling pathway. In summary, our data demonstrated that inhibition of the VEGF/ PKC/ET/NF-κB/ICAM-1 signaling pathway significantly alleviated DR-related pathology in the rat model. Therefore, VEGF/PKC/ET/NF-κB/ICAM-1 signaling axis is a promising therapeutic target for DR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9667573PMC
http://dx.doi.org/10.4081/ejh.2022.3522DOI Listing

Publication Analysis

Top Keywords

signaling pathway
20
dr+vegf agonist
16
retinal tissues
16
pkc/et/nf-κb/icam-1 signaling
12
dr+vegf inhibitor
12
agonist rats
12
diabetic retinopathy
8
rat model
8
vegf/pkc/et/nf-κb/icam-1 signaling
8
blood glucose
8

Similar Publications

Adrenomedullin 2/Intermedin Exerts Cardioprotective Effects by Regulating Cardiomyocyte Mitochondrial Function.

Hypertension

January 2025

Department of Cardiovascular Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan. (Y. Zhao, T. Sakurai, A.K., M.T., Y.I.-S., H.K., Y.M., Y. Zhang, Q.G., P.L., K.H., M.H., J.L., T. Shindo).

Background: Adrenomedullin 2 (AM2) plays critical roles in regulating blood pressure and fluid balance. However, the specific involvement of AM2 in cardiac hypertrophy has not been comprehensively elucidated, warranting further investigation into its molecular mechanisms and therapeutic implications.

Methods: Cardiac hypertrophy was induced in adult mice lacking AM2 (AM2-/-) using transverse aortic constriction surgery.

View Article and Find Full Text PDF

Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is an inflammation-associated tumor with a dismal prognosis. Immunotherapy has become an important treatment strategy for HCC, as immunity is closely related to inflammation in the tumor microenvironment. Inflammation regulates the expression of programmed death ligand-1 (PD-L1) in the immunosuppressive tumor microenvironment and affects immunotherapy efficacy.

View Article and Find Full Text PDF

Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.

View Article and Find Full Text PDF

Blockade of the TGFβ signaling pathway has emerged from preclinical studies as a potential treatment to enhance the efficacy of immune checkpoint inhibition in advanced colorectal cancer (CRC) and several other types of cancer. However, clinical translation of first-generation inhibitors has shown little success. Here, we report the synthesis and characterization of HYL001, a potent inhibitor of TGFβ receptor 1 (ALK5), that is approximately 9 times more efficacious than the structurally related compound galunisertib, while maintaining a favorable safety profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!